
Aleš Drápal, Jan Hora
Nonassociative triples in involutory loops and in loops of small order

Comment.Math.Univ.Carolin. 61,4 (2020) 459 –479.

Abstract: A loop of order n possesses at least 3n2
−3n+1 associative triples. However, no

loop of order n > 1 that achieves this bound seems to be known. If the loop is involutory,
then it possesses at least 3n2

− 2n associative triples. Involutory loops with 3n2
− 2n

associative triples can be obtained by prolongation of certain maximally nonassociative
quasigroups whenever n−1 is a prime greater than or equal to 13 or n−1 = p

2k, p an odd
prime. For orders n ≤ 9 the minimum number of associative triples is reported for both
general and involutory loops, and the structure of the corresponding loops is described.
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[3] Drápal A., Valent V., Extreme nonassociativity in order nine and beyond, J. Combin. Des.

28 (2020), no. 1, 33–48.
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