Ales Drapal, Jan Hora
Nonassociative triples in involutory loops and in loops of small order
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Abstract: A loop of order n possesses at least 3n? —3n41 associative triples. However, no
loop of order n > 1 that achieves this bound seems to be known. If the loop is involutory,
then it possesses at least 3n® — 2n associative triples. Involutory loops with 3n? — 2n
associative triples can be obtained by prolongation of certain maximally nonassociative
quasigroups whenever n— 1 is a prime greater than or equal to 13 or n—1 = p**, p an odd
prime. For orders n < 9 the minimum number of associative triples is reported for both
general and involutory loops, and the structure of the corresponding loops is described.
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