
Richard N. Ball

Structural aspects of truncated archimedean vector lattices: good se-
quences, simple elements

Comment.Math.Univ.Carolin. 62,1 (2021) 95 –134.

Abstract: The truncation operation facilitates the articulation and analysis of several
aspects of the structure of archimedean vector lattices; we investigate two such aspects
in this article. We refer to archimedean vector lattices equipped with a truncation as
truncs. In the first part of the article we review the basic definitions, state the (pointed)
Yosida representation theorem for truncs, and then prove a representation theorem which
subsumes and extends the (pointfree) Madden representation theorem. The proof has the
virtue of being much shorter than the one in the literature, but the real novelty of the
theorem lies in the fact that the topological data dual to a given trunc G is a (localic)
compactification, i.e., a dense pointed frame surjection q : M → L out of a compact
regular pointed frame M . The representation is an amalgam of the Yosida and Madden
representations; the compact frame M is sufficient to describe the behavior of the bounded

part G∗ of G in the sense that G̃∗ separates the points of the compact Hausdorff pointed
space X dual to M , while the frame L is just sufficient to capture the behavior of the
unbounded part of G in R0L. The truncation operation lends itself to identifying those
elements of a trunc which behave like characteristic functions, and in the second part of
the article we characterize in several ways those truncs composed of linear combinations
of such elements. Along the way, we show that the category of such truncs is equivalent
to the category of pointed Boolean spaces, and to the category of generalized Boolean
algebras. The short third part contains a characterization of the kernels of truncation
homomorphisms in terms of pointwise closure. In it we correct an error in the literature.
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[1] Adámek J., Herrlich H., Strecker G.E., Abstract and Concrete Categories, the Joy of Cats,
Repr. Theory Appl. Categ., 17, Wiley, New York, 2004.

[2] Ball R. N., Truncated abelian lattice-ordered groups I: the pointed (Yosida) representation,
Topology Appl. 162 (2014), 43–65.

[3] Ball R.N., Truncated abelian lattice-ordered groups II: the pointfree (Madden) representation,
Topology Appl. 178 (2014), 56–86.

[4] Ball R.N., Pointfree pointwise convergence, Baire functions, and epimorphisms in truncated
Archimedean l-groups, Topology Appl. 235 (2018), 492–522.

[5] Ball R.N., Hager A.W., On the localic Yosida representation of an Archimedean lattice
ordered group with weak order unit, Proc. of the Conf. on Locales and Topological Groups,
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