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Abstract: In set theory without the axiom of choice (AC), we observe new relations of
the following statements with weak choice principles. ◦ If in a partially ordered set, all
chains are finite and all antichains are countable, then the set is countable. ◦ If in a
partially ordered set, all chains are finite and all antichains have size ℵα, then the set has
size ℵα for any regular ℵα. ◦ Every partially ordered set without a maximal element has
two disjoint cofinal sub sets – CS. ◦ Every partially ordered set has a cofinal well-founded
subset – CWF. ◦ Dilworth’s decomposition theorem for infinite partially ordered sets of
finite width – DT. We also study a graph homomorphism problem and a problem due to
A. Hajnal without AC. Further, we study a few statements restricted to linearly-ordered
structures without AC.
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