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Abstract: We deal with the so-called Ahlfors regular sets (also known as s-regular sets)
in metric spaces. First we show that those sets correspond to a certain class of tree-like
structures. Building on this observation we then study the following question: Under
which conditions does the limit limε→0+ εsN(ε,K) exist, where K is an s-regular set and
N(ε,K) is for instance the ε-packing number of K?
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[7] Kesseböhmer M., Kombrink S., A complex Ruelle–Perron–Frobenius theorem for infinite
Markov shifts with applications to renewal theory, Discrete Contin. Dyn. Syst. Ser. S 10

(2017), no. 2, 335–352.
[8] Kesseböhmer M., Kombrink S., Minkowski measurability of infinite conformal graph directed

systems and application to Apollonian packings, available at arXiv:1702.02854v1 [math.DS]
(2017), 30 pages.

[9] Kombrink S., Renewal theorems for a class of processes with dependent interarrival times
and applications in geometry, available at arXiv:1512.08351v2 [math.PR] (2017), 25 pages.

[10] Lalley S. P., The packing and covering functions of some self-similar fractals, Indiana Univ.
Math. J. 37 (1988), no. 3, 699–710.

[11] Lalley S. P., Renewal theorems in symbolic dynamics, with applications to geodesic flows,
non-Euclidean tessellations and their fractal limits, Acta Math. 163 (1989), no. 1–2, 1–55.

[12] Mattila P., Geometry of Sets and Measures in Euclidean Spaces, Fractals and rectifiability,
Cambridge Studies in Advanced Mathematics, 44, Cambridge University Press, Cambridge,
1995.

[13] Schief A., Separation properties for self-similar sets, Proc. Amer. Math. Soc. 122 (1994), no.
1, 111–115.
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