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Abstract: A topological space X is totally Brown if for each n ∈ N \ {1} and every
nonempty open subsets U1, U2, . . . , Un of X we have clX(U1)∩clX(U2)∩· · ·∩clX(Un) 6= ∅.
Totally Brown spaces are connected. In this paper we consider the Golomb topology τG

on the set N of natural numbers, as well as the Kirch topology τK on N. Then we examine
subsets of these spaces which are totally Brown. Among other results, we characterize
the arithmetic progressions which are either totally Brown or totally separated in (N, τG).
We also show that (N, τG) and (N, τK) are aposyndetic. Our results generalize properties
obtained by A.M. Kirch in 1969 and by P. Szczuka in 2010, 2013 and 2015.
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