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Abstract: We show in ZF that: (i) Every subcompact metrizable space is completely
metrizable, and every completely metrizable space is countably subcompact. (ii) A metriz-
able space X = (X,T ) is countably compact if and only if it is countably subcompact rela-
tive to T . (iii) For every metrizable space X = (X,T ), the following are equivalent: (a) X

is compact; (b) for every open filter F of X,
⋂
{F : F ∈ F} 6= ∅; (c) X is subcompact rela-

tive to T . We also show: (iv) The negation of each of the statements, (a) every countably
subcompact metrizable space is completely metrizable, (b) every countably subcompact
metrizable space is subcompact, (c) every completely metrizable space is subcompact, is
relatively consistent with ZF. (v) AC if and only if for every family {Xi : i ∈ I} of metriz-
able subcompact spaces, for every family {Bi : i ∈ I} such that for every i ∈ I , Bi is a
subcompact base for Xi, the Tychonoff product X =

∏
i∈I

Xi is subcompact with respect
to the standard base B of X generated by the family {Bi : i ∈ I}.
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