† Jorge Martinez, Warren Wm. McGovern

 C^* -points vs P-points and P^{\flat} -points

Comment.Math.Univ.Carolin. 63,2 (2022) 245 -259.

Abstract: In a Tychonoff space X, the point $p \in X$ is called a C^* -point if every real-valued continuous function on $C \setminus \{p\}$ can be extended continuously to p. Every point in an extremally disconnected space is a C^* -point. A classic example is the space $\mathbf{W}^* = \omega_1 + 1$ consisting of the countable ordinals together with ω_1 . The point ω_1 is known to be a C^* -point as well as a P-point. We supply a characterization of C^* -points in totally ordered spaces. The remainder of our time is aimed at studying when a point in a product space is a C^* -point. This process leads to many interesting new discoveries.

Keywords: ring of continuous functions; C^* -embedded; P-point **AMS Subject Classification:** 54G10, 54D15, 54F05

References

- [1] Darnel M.R., *Theory of Lattice-ordered Groups*, Monographs and Textbooks in Pure and Applied Mathematics, 187, Marcel Dekker, New York, 1995.
- [2] van Douwen E.K., Remote Points, Dissertationes Math., Rozprawy Mat. 188 (1981), 45 pages.
- [3] Dow A., Henriksen M., Kopperman R., Woods R. G., Topologies and cotopologies generated by sets of functions, Houston J. Math. 19 (1993), no. 4, 551–586.
- [4] Engelking R., General Topology, Sigma Series in Pure Mathematics, 6, Heldermann Verlag, Berlin, 1989.
- [5] Gillman L., Jerison M., Rings of Continuous Functions, Graduate Texts in Mathametics, 43, Springer, New York, 1976.
- [6] McGovern W. W., Rings of quotients of C(X) induced by points, Acta Math. Hungar. 105 (2004), no. 3, 215–230.