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Abstract: Let G be a finite group. The prime graph of G is a simple graph Γ(G) whose
vertex set is π(G) and two distinct vertices p and q are joined by an edge if and only
if G has an element of order pq. A group G is called k-recognizable by prime graph if
there exist exactly k nonisomorphic groups H satisfying the condition Γ(G) = Γ(H). A
1-recognizable group is usually called a recognizable group. In this problem, it was proved
that PGL(2, pα) is recognizable, if p is an odd prime and α > 1 is odd. But for even α, only
the recognizability of the groups PGL(2, 52), PGL(2, 32) and PGL(2, 34) was investigated.
In this paper, we put α = 2 and we classify the finite groups G that have the same prime
graph as Γ(PGL(2, p2)) for p = 7, 11, 13 and 17. As a result, we show that PGL(2, 72) is
unrecognizable; and PGL(2, 132) and PGL(2, 172) are recognizable by prime graph.
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Izv. 6 (2009), 1–12.

[26] Zavarnitsine A.V., Fixed points of large prime-order elements in the equicharacteristic action
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