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Abstract: In set theory without the axiom of choice (AC), we observe new relations of
the following statements with weak choice principles.

◦ Plf,c (Every locally finite connected graph has a maximal independent set).
◦ Plc,c (Every locally countable connected graph has a maximal independent

set).

◦ CACℵα

1
(If in a partially ordered set all antichains are finite and all chains

have size ℵα, then the set has size ℵα) if ℵα is regular.
◦ CWF (Every partially ordered set has a cofinal well-founded subset).
◦ PG,H2

(For any infinite graph G = (VG, EG) and any finite graph H =
(VH , EH) on 2 vertices, if every finite subgraph of G has a homomorphism
into H , then so has G).

◦ If G = (VG, EG) is a connected locally finite chordal graph, then there is
an ordering “<” of VG such that {w < v : {w, v} ∈ EG} is a clique for each
v ∈ VG.
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