## Amitayu Banerjee

Maximal independent sets, variants of chain/antichain principle and cofinal subsets without AC

Comment.Math.Univ.Carolin. 64,2 (2023) 137 -159.

> Abstract: In set theory without the axiom of choice (AC), we observe new relations of the following statements with weak choice principles.
> - $\mathcal{P}_{\text {lf,c }}$ (Every locally finite connected graph has a maximal independent set).
> - $\mathcal{P}_{1 c, c}$ (Every locally countable connected graph has a maximal independent set).
> $\circ \mathrm{CAC}_{1}^{\aleph_{\alpha}}$ (If in a partially ordered set all antichains are finite and all chains have size $\aleph_{\alpha}$, then the set has size $\aleph_{\alpha}$ ) if $\aleph_{\alpha}$ is regular.
> - CWF (Every partially ordered set has a cofinal well-founded subset).
> - $\mathcal{P}_{G, H_{2}}$ (For any infinite graph $G=\left(V_{G}, E_{G}\right)$ and any finite graph $H=$ $\left(V_{H}, E_{H}\right)$ on 2 vertices, if every finite subgraph of $G$ has a homomorphism into $H$, then so has $G$ ).
> - If $G=\left(V_{G}, E_{G}\right)$ is a connected locally finite chordal graph, then there is an ordering " $<$ " of $V_{G}$ such that $\left\{w<v:\{w, v\} \in E_{G}\right\}$ is a clique for each $v \in V_{G}$.

Keywords: variants of chain/antichain principle; graph homomorphism; maximal independent sets; cofinal well-founded subsets of partially ordered sets; axiom of choice; Fraenkel-Mostowski (FM) permutation models of ZFA $+\neg$ AC
AMS Subject Classification: 03E25, 03E35, 06A07, 05C69

## References

[1] Banerjee A., Gyenis Z., Chromatic number of the product of graphs, graph homomorphisms, antichains and cofinal subsets of posets without $A C$, Comment. Math. Univ. Carolin. 62 (2021), no. 3, 361-382.
[2] Delhommé C., Morillon M., Spanning graphs and the axiom of choice, Rep. Math. Logic 40 (2006), 165-180.
[3] Diestel R., Graph Theory, Grad. Texts in Math., 173, Springer, Berlin, 2017.
[4] Friedman H. M., Invariant maximalilty and incompleteness, Foundations and Methods from Mathematics to Neuroscience, CSLI Lecture Notes, 213, CSLI Publications, Stanford, 2014, pages 25-51.
[5] Fulkerson D. R., Gross O. A., Incidence matrices and interval graphs, Pacific J. Math. 15 (1965), 835-855.
[6] Füredi Z., The number of maximal independent sets in connected graphs, J. Graph Theory 11 (1987), no. 4, 463-470.
[7] Galvin F., Komjáth P., Graph colorings and the axiom of choice, Period. Math. Hungar. 22 (1991), no. 1, 71-75.
[8] Hajnal A., The chromatic number of the product of two $\aleph_{1}$-chromatic graphs can be countable, Combinatorica 5 (1985), no. 2, 137-139.
[9] Halbeisen L., Tachtsis E., On Ramsey choice and partial choice for infinite families of $n$ element sets, Arch. Math. Logic 59 (2020), no. 5-6, 583-606.
[10] Herrlich H., Howard P., Tachtsis E., On special partitions of Dedekind- and Russell-sets, Comment. Math. Univ. Carolin. 53 (2012), no. 1, 105-122.
[11] Howard P., Keremedis K., Rubin J. E., Stanley A., Tachtsis E., Non-constructive properties of the real numbers, MLQ Math. Log. Q. 47 (2001), no. 3, 423-431.
[12] Howard P., Rubin J. E., Consequences of the Axiom of Choice, Mathematical Surveys and Monographs, 59, American Mathematical Society, Providence, 1998.
[13] Howard P., Saveliev D. I., Tachtsis E., On the set-theoretic strength of the existence of disjoint cofinal sets in posets without maximal elements, MLQ Math. Log. Q. 62 (2016), no. 3, 155176.
[14] Howard P., Tachtsis E., On vector spaces over specific fields without choice, MLQ Math. Log. Q. 59 (2013), no. 3, 128-146.
[15] Jech T. J., The Axiom of Choice, Stud. Logic Found. Math., 75, North-Holland Publishing Co., Amsterdam, American Elsevier Publishing, New York, 1973.
[16] Komjáth P., A note on uncountable chordal graphs, Discrete Math. 338 (2015), 1565-1566.
[17] Komjáth P., Totik V., Problems and Theorems in Classical Set Theory, Probl. Books in Math., Springer, New York, 2006.
[18] Läuchli H., Coloring infinite graphs and the Boolean prime ideal theorem, Israel J. Math. 9 (1971), 422-429.
[19] Loeb P. A., A new proof of the Tychonoff theorem, Amer. Math. Monthly 72 (1965), no. 7, 711-717.
[20] Mycielski J., Some remarks and problems on the coloring of infinite graphs and the theorem of Kuratowski, Acta Math. Acad. Sci. Hungar. 12 (1961), 125-129.
[21] Spanring C., Axiom of choice, maximal independent sets, argumentation and dialogue games, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl Publishing, 2014, pages 91-98.
[22] Tachtsis E., On Ramsey's theorem and the existence of infinite chains or infinite anti-chains in infinite posets, J. Symb. Log. 81 (2016), no. 1, 384-394.
[23] Tachtsis E., On the minimal cover property and certain notions of finite, Arch. Math. Logic 57 (2018), no. 5-6, 665-686.
[24] Tachtsis E., Dilworth's decomposition theorem for posets in ZF, Acta Math. Hungar. 159 (2019), no. 2, 603-617.
[25] Tachtsis E., Eos's theorem and the axiom of choice, MLQ Math. Log. Q. 65 (2019), no. 3, 280-292.

