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Abstract: We show that, under suitably general formulations, covering properties, accu-
mulation properties and filter convergence are all equivalent notions. This general corre-
spondence is exemplified in the study of products. We prove that a product is Lindelöf if
and only if all subproducts by ≤ ω1 factors are Lindelöf. Parallel results are obtained for
final ωn-compactness, [λ, µ]-compactness, the Menger and the Rothberger properties.

Keywords: filter convergence; ultrafilter; product; subproduct; sequential compactness;
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