Enrique Castañeda-Alvarado, Roberto C. Mondragón-Alvarez, Norberto Ordoñez

Induced mappings on hyperspaces $F_n^K(X)$

Comment.Math.Univ.Carolin. 65,1 (2024) 79-97.

Abstract: Given a metric continuum X and a positive integer n, $F_n(X)$ denotes the hyperspace of all nonempty subsets of X with at most n points endowed with the Hausdorff metric. For $K \in F_n(X)$, $F_n(K,X)$ denotes the set of elements of $F_n(X)$ containing K and $F_n^K(X)$ denotes the quotient space obtained from $F_n(X)$ by shrinking $F_n(K,X)$ to one point set. Given a map $f\colon X\to Y$ between continua, $f_n\colon F_n(X)\to F_n(Y)$ denotes the induced map defined by $f_n(A)=f(A)$. Let $K\in F_n(X)$, we shall consider the induced map in the natural way $f_{n,K}\colon F_n^K(X)\to F_n^{f(K)}(Y)$. In this paper we consider the maps $f, f_n, f_{n,K}$ for some $K\in F_n(X)$ and $f_{n,K}$ for each $K\in F_n(X)$; and we study relationship between them for the following classes of maps: homeomorphisms, monotone, confluent, light and open maps.

Keywords: continuum; symmetric product; quotient space; hyperspace; induced mapping **AMS Subject Classification:** 54B15, 54B20, 54C05, 54C10

References

- [1] Barragán F., Induced maps on n-fold symmetric product suspensions, Topology Appl. 158 (2011), no. 10, 1192–1205.
- [2] Castañeda-Alvarado E., Mondragón R.C., Ordoñez N., Orozco-Zitli F., The hyperspace $F_n^K(X)$, Bull. Iranian Math. Soc. **47** (2021), no. 3, 659–678.
- [3] Dugundji J., Topology, Allyn and Bacon, Boston, 1966.
- [4] Higuera G., Illanes A., Induced mappings on symmetric products, Topology Proc. 37 (2011), 367–401.
- [5] Hosokawa H., Induced mappings between hyperspaces II, Bull. Tokyo Gakugei Univ. (4) 44 (1992), 1–7.
- [6] Kuratowski K., Topology, Academic Press, New York, London, Państwowe Wydawnictwo Naukowe, Warsaw, 1968.
- [7] Macías S., Aposyndetic properties of symmetric products of continua, Topology Proc. 22 (1997), 281–296.
- [8] Macías S., Topics on Continua, Pure Appl. Math. Ser., 275, Chapman and Hall/CRC, Taylor and Francis Group, Boca Raton, 2005.
- [9] Maćkowiak T., Continuous Mappings on Continua, Dissertationes Math., Rozprawy Mat., 158, 1979.
- [10] Nadler S. B., Jr., Hyperspaces of Sets, A Text with Research Questions, Monographs and Texbooks in Pure and Applied Mathematics, 49, Marcel Dekker, New York-Basel, 1978.