Nyumbu Chishwashwa, Eric C. Mwambene

Vertex transitive graphs obtained by generalizing a left loop construction of the Hoffman-Singleton graph

Comment.Math.Univ.Carolin. 65,2 (2024) 203-213.

Abstract: We construct a family of vertex transitive graphs on a left loop structure of order $2q^2$ where q is a power of a prime such that $q \equiv 1 \mod 4$. The graphs are of diameter 2. The smallest of these graphs is isomorphic to the Hoffman–Singleton graph.

Keywords: left loop; quasi-associative; Cayley graph; Hoffman–Singleton graph; vertex transitive

AMS Subject Classification: 05C25, 05C60, 05C62, 05E18

References

- [1] Baez K., Towards a geometric theory for left loops, Comment. Math. Univ. Carolin. 55 (2014), no. 3, 315–323.
- [2] Gauyacq G., On quasi-Cayley graphs, Discrete Appl. Math. 77 (1997), no. 1, 43–58.
- [3] Godsil C., Royle G., Algebraic Graph Theory, Graduate Texts in Mathematics, 207, Springer, New York, 2001.
- [4] Hafner P. R., The Hoffman–Singleton graph and its automorphisms, J. Algebraic Combin. 18 (2003), no. 1, 7–12.
- [5] Hoffman A. J., Singleton R. R., On Moore graphs with diameters 2 and 3, IBM J. Res. Develop. 4 (1960), 497–504.
- [6] James L. O., A combinatorial proof that the Moore (7,2) graph is unique, Utilitas Math. 5 (1974), 79–84.
- [7] Mwambene E., Characterisation of regular graphs as loop graphs, Quaest. Math. 28 (2005), no. 2, 243–250.
- [8] Mwambene E., Representing vertex-transitive graphs on groupoids, Quaest. Math. 29 (2006), no. 3, 279–284.
- [9] Robertson G. N., Graphs Minimal under Girth, Valency and Connectivity Constraints, PhD Thesis, University of Waterloo, Ontario, 1969.
- [10] Sabidussi G., Vertex-transitive graphs, Monatsh. Math. 68 (1964), 426-438.
- [11] Magma Computational Algebra System, Computational Algebra Group, School of Mathematics and Statistics, University of Sydney: http://magma.maths.usyd.edu.au.