Tamás Csernák

On proper colorings of functions

Comment.Math.Univ.Carolin. 65,2 (2024) 215-238.

Abstract: We investigate the infinite version of the k-switch problem of D. Greenwell and L. Lovász. A function $F \colon {}^{\lambda}\kappa \to \kappa$ is a proper coloring if $F(x) \neq F(y)$ whenever x and y are totally different elements of ${}^{\lambda}\kappa$, i.e. $x(i) \neq y(i)$ for each $i \in \lambda$. We call F (i) weakly uniform if and only if there are pairwise totally different $\{r_{\alpha} : \alpha < \kappa\} \subset {}^{\lambda}\kappa$ with $F(r_{\alpha}) = \alpha$; (ii) tight if no proper coloring $G \colon {}^{\lambda}\kappa \to \kappa$ differs from F at exactly one point. We prove that a proper coloring $F \colon {}^{\lambda}\kappa \to \kappa$ is weakly uniform if and only if there is a κ^+ -complete ultrafilter $\mathscr U$ on λ and there is a permutation $\pi \in \operatorname{Sym}(\kappa)$ such that for each $x \in {}^{\lambda}\kappa$,

$$F(x) = \pi(\alpha) \Leftrightarrow \{i \in \lambda : x(i) = \alpha\} \in \mathscr{U}.$$

We also show that there are tight proper colorings which cannot be obtained in this way.

Keywords: power of graph; k-switch problem; ultrafilter; tight coloring; finite independence

AMS Subject Classification: 05C76, 05C63, 05C15

References

- [1] Komjáth P., Totik V., Ultrafilters, Amer. Math. Monthly 115 (2008), no. 1, 33-44.
- [2] Greenwell D., Lovász L., Applications of product colouring, Acta Math. Acad. Sci. Hungar. 25 (1974), 335–340.