Tanmayee Datta, Prasenjit Bal, Parthiba Das

Statistical convergence of order α in topology and its applications to selection principles

Comment.Math.Univ.Carolin. 65,2 (2024) 239-257.

Abstract: The statistical convergence in a topological space is constrained in this study up to order α , where $\alpha \in (0,1)$. A fresh group of open covers (namely s^{α} - γ covers) and an entirely novel category of denseness (namely s^{α} -denseness) are proposed using this notion of s^{α} -convergence, which has been used to study various topological aspects of s^{α} -density. It has been revealed that the class of s^{α} - γ coverings falls somewhere between the class of γ covers and the class of s- γ covers. The influence of s^{α} - γ covers in topological games and selection principles are also investigated.

Keywords: asymptotic density; statistical convergence; γ cover; selection principle **AMS Subject Classification:** 54D20, 54B20, 54C35

References

- Bal P., A countable intersection like characterization of Star-Lindelöf spaces, Researches in Mathematics 31 (2023), no. 2, 3-7.
- [2] Bal P., On strongly star g-compactness of topological spaces, Tatra Mt. Math. Publ. 85 (2023), 89–100.
- [3] Bal P., On the class of I-\(\gamma\) open cover and I-St-\(\gamma\) open covers, Hacettepe Journal of Mathematics and Statistics 52 (2023), no. 3, 630-639.
- [4] Bal P., De R., On strongly star semi-compactness of topological spaces, Khayyam J. Math. 9 (2023), no. 1, 54-60.
- [5] Bal P., Kočinac L. D. R., On selectively star-ccc spaces, Topology Appl. 281 (2020), Art. No. 107184, 8 pages.
- [6] Bal P., Rakshit D., A variation of the class of statistical γ covers, Topol. Algebra Appl. 11 (2023), no. 1, 20230101, 9 pages.
- [7] Bal P., Rakshit D., Sarkar S., Countable compactness modulo an ideal of natural numbers, Ural Math. J. 9 (2023), no. 2, 28-35.
- [8] Bhunia S., Das P., Pal S.K., Restricting statistical convergence, Acta Math. Hungar. 134 (2012), no. 1–2, 153–161.
- [9] Çolak R., Statistical convergence of order α , Acta Mathematica Scientia **31** (2010), no. 3, 121–129; in Modern Methods in Analysis and Its Applications, Anamaya Publication, New Delhi, 2010, pages 121–129.
- [10] Çolak R., Bektaş Ç.A., λ -statistical convergence of order α , Acta Math. Sci. Ser. B (Engl. Ed.) **31** (2011), no. 3, 953–959.
- [11] Connor J. S., The statistical and strong p-Cesàro convergence of sequences, Analysis 8 (1988), no. 1–2, 47–63.
- [12] Das P., Certain types of open covers and selection principles using ideals, Houston J. Math. 39 (2013), no. 2, 637–650.
- [13] Engelking R., General Topology, Sigma Series in Pure Mathematics, 6, Heldermann Verlag, Berlin, 1989.
- [14] Fast H., Sur la convergence statistique, Colloq. Math. 2 (1951), 241–244 (French).
- [15] Fridy J. A., On statistical convergence, Analysis 5 (1985), no. 4, 301–313.
- [16] Kočinac L. D. R., Selected results on selection principles, in: Proc. of the 3rd Seminar on Geometry and Topology, Tabriz, 2004, pages 71–104.
- [17] Kočinac L. D. R., Selection principles related to α_i-properties, Taiwanese J. Math. 12 (2008), no. 3, 561–571.
- [18] Di Maio G., Kočinac L. D. R., Statistical convergence in topology, Topology Appl. 156 (2008), no. 1, 28–45.
- [19] Scheepers M., Selection principles and covering properties in topology, Note Mat. 22 (2003/2004), no. 2, 3–41.
- [20] Schoenberg I. J., The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (1959), 361–375.

[21] Zygmund A., $\it Trigonometrical Series, Monogr. Mat., 5, PWN-Państwowe Wydawnictwo Naukowe, Warszawa, 1935.$