Simon Fitzpatrick, Bruce Calvert
Sets invariant under projections onto one dimensional subspaces

Comment.Math.Univ.Carolinae 32,2 (1991) 227-232.

Abstract:The Hahn--Banach theorem implies that if $m$ is a one dimensional subspace of a t.v.s. $E$, and $B$ is a circled convex body in $E$, there is a continuous linear projection $P$ onto $m$ with $P(B)\subseteq B$. We determine the sets $B$ which have the property of being invariant under projections onto lines through $0$ subject to a weak boundedness type requirement.

Keywords: convex, projection, Hahn--Banach, subsets of $\Bbb R^2$
AMS Subject Classification: 52ADY, 46A55