M. Henriksen, S. Larson, F.A. Smith When is every order ideal a ring ideal?

Comment.Math.Univ.Carolinae 32,3 (1991) 411-416.

Abstract: A lattice-ordered ring \mathbb{R} is called an OIRI-ring if each of its order ideals is a ring ideal. Generalizing earlier work of Basly and Triki, OIRI-rings are characterized as those f-rings \mathbb{R} such that \mathbb{R}/\mathbb{I} is contained in an f-ring with an identity element that is a strong order unit for some nil l-ideal \mathbb{I} of \mathbb{R} . In particular, if $P(\mathbb{R})$ denotes the set of nilpotent elements of the f-ring \mathbb{R} , then \mathbb{R} is an OIRI-ring if and only if $\mathbb{R}/P(\mathbb{R})$ is contained in an f-ring with an identity element that is a strong order unit.

Keywords: *f*-ring, OIRI-ring, strong order unit, *l*-ideal, nilpotent, annihilator, order ideal, ring ideal, unitable, archimedean **AMS Subject Classification:** 06F25, 13C05