Josef Mlček Valuations of lines

Comment.Math.Univ.Carolinae 33,4 (1992) 667-679.

Abstract: We enlarge the problem of valuations of triads on so called lines. A line in an *e*-structure $\mathbb{A} = \langle A, F, E \rangle$ (it means that $\langle A, F \rangle$ is a semigroup and *E* is an automorphism or an antiautomorphism on $\langle A, F \rangle$ such that $E \circ E = \mathbf{Id} \upharpoonright A$) is, generally, a sequence $\mathbb{A} \upharpoonright B$, $\mathbb{A} \upharpoonright U_c$, $c \in \mathbf{FZ}$ (where \mathbf{FZ} is the class of finite integers) of substructures of \mathbb{A} such that $B \subseteq U_c \subseteq U_d$ holds for each $c \leq d$. We denote this line as $\mathbb{A}(U_c, B)_{c \in \mathbf{FZ}}$ and we say that a mapping *H* is a valuation of the line $\mathbb{A}(U_c, B)_{c \in \mathbf{FZ}}$ in a line $\mathbb{A}(\hat{U}_c, \hat{B})_{c \in \mathbf{FZ}}$ if it is, for each $c \in \mathbf{FZ}$, a valuation of the triad $\mathbb{A}(U_c, B)$ in $\mathbb{A}(\hat{U}_c, \hat{B})$. Some theorems on an existence of a valuation of a given line in another one are presented and some examples concerning equivalences and ideals are discussed. A generalization of the metrization theorem is presented, too.

Keywords: valuation, triad, metrization theorem, semigroup **AMS Subject Classification:** 03E70, 54E35, 20M14