Marek Wójtowicz On a weak Freudenthal spectral theorem

Comment.Math.Univ.Carolinae 33,4 (1992) 631-643.

Abstract: Let X be an Archimedean Riesz space and $\mathcal{P}(X)$ its Boolean algebra of all band projections, and put $\mathcal{P}_e = \{Pe : P \in \mathcal{P}(X)\}$ and $\mathcal{B}_e = \{x \in X : x \land (e-x) = 0\}, \ e \in X^+$. X is said to have Weak Freudenthal Property (WFP) provided that for every $e \in X^+$ the lattice $lin\mathcal{P}_e$ is order dense in the principal band e^{dd} . This notion is compared with strong and weak forms of Freudenthal spectral theorem in Archimedean Riesz spaces, studied by Veksler and Lavrič, respectively. WFP is equivalent to X^+ -denseness of \mathcal{P}_e in \mathcal{B}_e for every $e \in X^+$, and every Riesz space with sufficiently many projections has WFP (THEOREM).

Keywords: Freudenthal spectral theorem, band, band projection, Boolean algebra, disjointness

AMS Subject Classification: Primary 46A40; Secondary 06E99, 06B10