Horst Alzer
Note on special arithmetic and geometric means

Comment.Math.Univ.Carolinae 35,2 (1994) 409-412.

Abstract:We prove: If $A(n)$ and $G(n)$ denote the arithmetic and geometric means of the first $n$ positive integers, then the sequence $n\mapsto nA(n)/G(n)-(n-1)A(n-1)/G(n-1)$ $(n\geq 2)$ is strictly increasing and converges to $e/2$, as $n$ tends to $\infty $.

Keywords: arithmetic and geometric means, discrete inequality
AMS Subject Classification: 26D15

PDF