

Jaroslav Nešetřil, Jouko A. Väänänen
Combinatorics and quantifiers

Comment.Math.Univ.Carolinae 37,3 (1996) 433-443.

Abstract: Let $\binom{I}{m}$ be the set of subsets of I of cardinality m . Let f be a coloring of $\binom{I}{m}$ and g a coloring of $\binom{I}{m}$. We write $f \rightarrow g$ if every f -homogeneous $H \subseteq I$ is also g -homogeneous. The least m such that $f \rightarrow g$ for some $f : \binom{I}{m} \rightarrow k$ is called the k -width of g and denoted by $w_k(g)$. In the first part of the paper we prove the existence of colorings with high k -width. In particular, we show that for each $k > 0$ and $m > 0$ there is a coloring g with $w_k(g) = m$. In the second part of the paper we give applications of wide colorings in the theory of generalized quantifiers. In particular, we show that for every monadic similarity type $t = (1, \dots, 1)$ there is a generalized quantifier of type t which is not definable in terms of a finite number of generalized quantifiers of a smaller type.

Keywords: generalized quantifier, Ramsey theory

AMS Subject Classification: 05C55, 03C