

Saharon Shelah
Finite canonization

Comment.Math.Univ.Carolinae 37,3 (1996) 445-456.

Abstract: The canonization theorem says that for given m, n for some m^* (the first one is called $ER(n; m)$) we have

for every function f with domain $[1, \dots, m^*]^n$, for some $A \in [1, \dots, m^*]^m$, the question of when the equality $f(i_1, \dots, i_n) = f(j_1, \dots, j_n)$ (where $i_1 < \dots < i_n$ and $j_1 < \dots < j_n$ are from A) holds has the simplest answer: for some $v \subseteq \{1, \dots, n\}$ the equality holds iff $\bigwedge_{\ell \in v} i_\ell = j_\ell$.

We improve the bound on $ER(n, m)$ so that fixing n the number of exponentiation needed to calculate $ER(n, m)$ is best possible.

Keywords: Ramsey theory, Erdős-Rado theorem, canonization

AMS Subject Classification: 05, 05C55