

Jarmila Ranošová

Characterization of sets of determination for parabolic functions on a slab by coparabolic (minimal) thinness

Comment.Math.Univ.Carolinae 37,4 (1996) 707-723.

Abstract: Let T be a positive number or $+\infty$. We characterize all subsets M of $\mathbb{R}^n \times]0, T[$ such that

$$(i) \quad \inf_{X \in \mathbb{R}^n \times]0, T[} u(X) = \inf_{X \in M} u(X)$$

for every positive parabolic function u on $\mathbb{R}^n \times]0, T[$ in terms of coparabolic (minimal) thinness of the set $M_\delta = \bigcup_{(x,t) \in M} B^p((x,t), \delta t)$, where $\delta \in (0, 1)$ and $B^p((x,t), r)$ is the “heat ball” with the “center” (x,t) and radius r . Examples of different types of sets which can be used instead of “heat balls” are given.

It is proved that (i) is equivalent to the condition $\sup_{X \in \mathbb{R}^n \times \mathbb{R}^+} u(X) = \sup_{X \in M} u(X)$ for every bounded parabolic function on $\mathbb{R}^n \times \mathbb{R}^+$ and hence to all equivalent conditions given in the article [7].

The results provide a parabolic counterpart to results for classical harmonic functions in a ball, see References.

Keywords: heat equation, parabolic function, Weierstrass kernel, set of determination, Harnack inequality, coparabolic thinness, coparabolic minimal thinness, heat ball

AMS Subject Classification: 35K05, 35K15, 31B10