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Totality of product completions

Jiř́ı Adámek, Lurdes Sousa, Walter Tholen

Abstract. Categories whose Yoneda embedding has a left adjoint are known as total
categories and are characterized by a strong cocompleteness property. We introduce the
notion of multitotal category A by asking the Yoneda embedding A → [Aop,Set] to be
right multiadjoint and prove that this property is equivalent to totality of the formal
product completion ΠA of A. We also characterize multitotal categories with various
types of generators; in particular, the existence of dense generators is inherited by the
formal product completion iff measurable cardinals cannot be arbitrarily large.
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1. Introduction

The concept of totality, introduced by Street and Walters [15], is a strong property
of categories (implying completeness and cocompleteness — and more, see [14],
[11]) which, nevertheless, most “current” categories enjoy. Recall that a category
A is called total if its Yoneda embedding YA : A → [Aop,Set] is right adjoint.
Since solid functors (i.e., “good” faithful, right adjoint functors) A → X lift
totality from X to A (see [17]), totality of Set and of its small-indexed powers is
responsible for the totality of many important types of categories. For example,
it allows us to conclude that all cocomplete, cowellpowered categories with a
generator are total. These include locally presentable categories and monadic or
topological categories over Set.
In the present paper we investigate the totality of the free product completion

ΠA of a category A (dual to the free coproduct completion FamAop). The moti-
vation is to describe the appropriate strong property of categories which are not
cocomplete, but only multicocomplete, i.e., every small diagram has a multicol-
imit (as introduced by Y. Diers); examples are the category of linearly ordered
sets, the category of fields, the category of local rings, all locally multipresentable
categories in the sense of Diers [8], etc. Usually, “multi-concepts” for A are easily
seen to be equivalent to the corresponding concepts for ΠA, e.g., a category A is
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multicocomplete iff ΠA is cocomplete, and a functor F : A → B is right multiad-
joint iff ΠF : ΠA → ΠB is right adjoint, see [7]. We call a category multitotal if
its Yoneda embedding YA is right multiadjoint; the question naturally arising is
whether A is multitotal iff ΠA is total. The affirmative answer in Theorem 3.6
of this paper unexpectedly turns out to have a somewhat involved proof. This
theorem enables us to establish quite easily analogues of the results of [17], [3]
in the “multi” context. Namely, we are able to characterize multitotal categories
with various types of generators; in particular the above mentioned examples of
multicocomplete categories are all multitotal. In fact, any multicocomplete, co-
wellpowered category with a generator is multitotal. While it is easy to see that
the existence of a (strong or regular) generator in a category with a multi-initial
object gives the same for its product completion, the corresponding property for
dense generator turns out to be more involved. In fact, the question of whether
a dense generator exists in Π(A) whenever it exists in A depends on the set-
theoretical assumption (M) that measurable cardinals are not arbitrarily large.
One direction follows from Isbell’s result in [10] that Setop has a dense generator
iff (M) holds; the converse direction is more difficult.
Analogously to the role of solid functors for totality, multisolid functors play an
essential role in detecting multitotal categories. Multisolid functors U : A → X
were already introduced (under a different name) and characterized in [18] by
the property that the product-preserving extension ΠU : ΠA → ΠX is solid.
For X multicocomplete and A cowellpowered, they are precisely the faithful right
multiadjoint functors for which A is multicocomplete, as shown more recently
in [13].

2. Review of total categories and solid functors

2.1. A diagram H : D → A in a category A is said to be small-partitioned [12]
if for all A ∈ A the comma category (A ↓ H) has only a small set of connected
components. Thus, every small diagram is small-partitioned. An example of
a (generally large) small-partitioned diagram is the diagram of elements of any
functor fromA to Set. Recall from [11] that the following conditions are equivalent
for A:
(i) A is total, i.e., the Yoneda embedding YA : A −→ [Aop,Set] has a left
adjoint;

(ii) colimH exists in A whenever the diagramH : D → A is small-partitioned;
(iii) colimH exists in A whenever, for all A ∈ A, colimA(A,H−) exists in Set.

2.2. Total categories are trivially cocomplete (i.e., have colimits of all small dia-
grams), but they are also complete — indeed, they are “as complete as a category
with small hom-sets can possibly be”. In fact, recall that a category A is called
hypercomplete [5] if every diagram H : D → A for which limA(A,H−) exists in
Set for all A ∈ A, has a limit in A. The following conditions are equivalent ([4]):

(i) A is hypercomplete;
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(ii) limH exists in A for every diagram H : D → A with the property that
for all A ∈ A, there is only a small set of cones ∆A→ H in A.

Every total category is hypercomplete, see [4].

2.3. Since solid functors detect totality, we briefly recall this notion. For a functor
U : A → X , a U -sink σ with codomain X ∈ X is a (possibly large) family of
A-objects Ai and of X -morphisms xi : UAi → X (i ∈ I). Let (X ↓ U)σ be the
full subcategory of (X ↓ U) of all objects y : X → UB such that for every i ∈ I

there exists a morphism fi : Ai → B in A with Ufi = y · xi. The functor U is
solid (formerly semi-topological [16]) if U is faithful and if for every U -sink σ the
category (X ↓ U)σ has an initial object. The following conditions are equivalent
for every functor U : A → X (see [16], [4], [11]):

(i) U is solid;
(ii) U has a left adjoint, and there is a class E of morphisms in A containing all
isomorphisms and being closed under composition with them, such that
1. the counits of U belong to E ;
2. A is E-cocomplete, that is: a. the pushout of a morphism in E along
any morphism exists in A and belongs to E , and b. the cointersection
of a (possibly large) family of morphisms in E with common domain
exists in A and belongs to E .

In particular, every faithful right adjoint functor U : A → X defined on a
cocomplete and cowellpowered category A is solid. The connection with totality
is given by the following

Theorem. Let U : A → X be a functor. Then:

(1) If X is total and U solid, then also A is total (see [17]).
(2) If A is total and U faithful and right adjoint, then U is solid (see [3]).
Recall that a generator in a category A is a set G of objects such that the

canonical functor A → SetG , A 7→ (A(G,A))G∈G , is faithful. Since Set and all
its small-indexed powers are total, the above theorem shows in particular:

Corollary ([4]). Every cocomplete, cowellpowered category with a generator is
total.

2.4. Recall that the free product completion ΠA of a category A has objects
A = (Ai)i∈I given by small-indexed families of A-objects Ai, and a morphism
f : A → B = (Bj)j∈J in ΠA is given by a function ϕ : J → I and a family
fj : Aϕ(j) → Bj (j ∈ J) of A-morphisms (with the obvious composition and

identity maps), see [7]. Writing SA = I and Sf = ϕ, one has a functor

S : (ΠA)op −→ Set.

Whenever necessary we write SA instead of S for distinction. In the terminology
of [6], ΠA = (Fam(Aop))op. We denote by

JA : A −→ ΠA



12 J.Adámek, L. Sousa, W.Tholen

the canonical embedding which identifies objects of A with singleton families.
Every functor F : A → B into a category with products has a product-preserving
extension F : ΠA → B which is unique up to natural isomorphism; hence, [A,B]
is equivalent to the full subcategory of product-preserving functors in [ΠA,B].

2.5. A multicolimit of a diagram H : D → A in A is given by a colimit of JAH in
ΠA; hence, it is a small-indexed family (Li)i∈I of A-objects together with cocones
λi : H → ∆Li, such that every cocone H → ∆B in A factors uniquely through
λi, for a unique i ∈ I. Already Diers [7] proved that every small diagram in A
has a multicolimit if and only if ΠA is cocomplete. As we shall deal with large
diagrams, we need a precise analysis of this result. For H : D → ΠA first assume
that the limit K = limSHop exists in Set; hence, every element α ∈ K is given
by a compatible family of elements αD ∈ SHD, D ∈ D. Every α ∈ K defines a
diagram

Hα : D → A with HαD = (HD)αD , Hαd = (Hd)αD′ ,

for all d : D → D′ in D. (Note that Hαd is well-defined since (SHd)(αD′) = αD.)

Lemma ([7]). A diagram H : D → ΠA has a colimit in ΠA if SHop has a limit

K in Set and Hα has a multicolimit in A, for every α ∈ K.

Proof: For every α ∈ K, a multicolimit of Hα is given by a small family of
cocones λα,i : Hα → ∆Lα,i, i ∈ Iα. With L = (Lα,i)α∈K,i∈Iα, this defines a
cocone λ : H → ∆L when we put

(λD)α,i = (λα,i)D : (HD)αD = HαD → Lα,i

for every D ∈ D. In order to see that every cocone β : H → ∆B factors uniquely
through λα,i, for a unique pair (α, i), we may without loss of generality assume
B ∈ A. The naturality of the family βD (D ∈ D) defines a uniquely determined
element α ∈ K, and the morphisms βD : (HD)αD → B define in fact a cocone

β : Hα → ∆B. Hence, there are uniquely defined i ∈ Iα and f : Lα,i → B in A

with β = ∆f · λα,i, which gives the desired factorization β = ∆f · λ. �

2.6. A functor U : A → X is right multiadjoint if its extension

ΠU : ΠA −→ ΠX

with ΠU · JA = JX · U is right adjoint ([7]). Analogously one defines U to be
multisolid (“strongly localizing semitopological” in [18]) if ΠU is solid; this means
that U is faithful, and that for every U -sink σ as in 2.3 the category (X ↓ U)σ
has a multi-initial object (i.e., a multicolimit of the empty diagram).
The characterization 2.3 of solid functors should lead to a characterization of

multisolid functors when we exploit it for ΠU in lieu of U . In fact, let us agree that
a counit of a right multiadjoint functor U : A → X at A ∈ A is simply the counit
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of ΠU at A ∈ ΠA. For a class E of morphisms in A we call A multi-E-cocomplete
if the multipushout of a morphism in E along any morphism exists in A, with
every component of it belonging to E , and if the multicointersection of any family
of morphisms in E with common domain exists in A, with every component of it
belonging to E . Hence, if A is multi-E-cocomplete, then ΠA is EΠ-cocomplete,
with EΠ those morphisms of ΠA whose components lie in E ; conversely if ΠA is
F -cocomplete for a class of morphisms in ΠA, then A is multi-F1-cocomplete,
with F1 the class of those morphisms of A which appear as a component of some
morphism in F . These observations prove the following results which essentially
appeared in [13]:

Proposition. Equivalent are for a functor U : A → X :

(i) U : A → X is multisolid;
(ii) U : A → X is right multiadjoint, and there is a class E of morphisms in

A containing all isomorphisms and being closed under composition with
them, such that

1. the counits of U lie in E ,
2. A is multi-E-cocomplete.

Corollary ([13]). If X is multicocomplete and A cowellpowered, a faithful func-
tor U : A → X is multisolid if and only if A is multicocomplete.

3. Multitotal categories

3.1 Definition. A category A is called multitotal if the Yoneda embedding YA :
A → [Aop,Set] is right multiadjoint.

It is easy to prove a “multiversion” of the characterization 2.1 of total cate-
gories:

3.2 Proposition. The following conditions are equivalent for a category A:

(i) A is multitotal;
(ii) every small-partitioned diagram H : D → A has a multicolimit in A;
(iii) every diagram H : D → A for which colimA(A,H−) exists in Set for all

A ∈ A, has a multicolimit in A.

Proof: (i)⇒(ii). A small-partitioned diagram H : D → A defines a functor
E : Aop → Set which assigns to an object A the set of connected components of
(A ↓ H). A multicolimit λi : H → ∆Li (i ∈ I) is obtained from a ΠYA-universal
arrow (ηi : E → YALi)i∈I for E ∈ [Aop,Set]: one just evaluates (ηi)HD : EHD →
A(HD,Li) at the component (D, 1HD) in (HD ↓ H) to define (λi)D, for every
i ∈ I and D ∈ D.

(ii)⇒(i). For any E ∈ [Aop,Set] one considers a multicolimit (λi)i∈I of the
small-partitioned forgetful functor H : elE → A, where elE is the “element
category” with objects (A, x), A ∈ A, x ∈ EA. Then the ΠYA-universal arrow
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(ηi)i∈I for E is obtained as (ηi)A(x) = (λi)(A,x), for every i ∈ I, A ∈ A and
x ∈ EA.

(ii)⇔(iii) follows from the fact that, given a diagram H : D → A and A ∈ A,
colimA(A,H−) exists in Set iff (A ↓ H) has just a set of connected components.

�

3.3 Corollary. If ΠA is total, then A is multitotal.

Proof: We check condition (ii) of 3.2. Given a small-partitioned diagram H :
D → A, it is easy to see that then also JAH : D → ΠA is small-partitioned,
so that colimJAH exists in ΠA, by hypothesis. But this is, by definition, a
multicolimit of H in A. �

3.4. The question which remains is whether multitotality of A is also a sufficient
condition for ΠA to be total. In other words: does right adjointness of ΠYA imply
right adjointness of YΠA? For every category A denote by [(ΠA)

op,Set]∐ the full
subcategory of [(ΠA)op,Set] of all coproduct-preserving functors; then one has a
functor Σ which makes the upper triangle of the diagram (1) below commutative
(up to natural isomorphism):

(1)

ΠA
ΠYA

yyrrrrrrrrrr
YΠA

&&NNNNNNNNNNN

Π[A)op,Set]
Σ // [(ΠA)op,Set]

[Aop,Set]
?�

OO

∼ // [ (ΠA)op,Set]∐

?�

OO

Σ is the product-preserving extension of the functor that assigns to E ∈ [Aop,Set]
the functor ΣE with (ΣE)(Ck)K = ∐k∈KECk; of course, ΣE ∈ [(ΠA)op,Set]∐.
It is clear that the restriction of Σ creates an equivalence of categories, as indicated
in (1). Now it is a straightforward exercise to show that the existence of a left
adjoint to ΠYA gives a (YΠA)-universal arrow for every F ∈ [Aop,Set]∐, hence
a “partial left adjoint” to YΠA. We now establish the existence of “a totally
defined” left adjoint.

3.5 Example. The category ΠSet is total. To see this, we check the conditions
of Corollary 2.3. First observe that ΠSet is certainly cocomplete (see 2.5). Now,
a morphism f : A → B in ΠSet is an epimorphism if and only if ϕ = Sf :
SB → SA is injective and every map fj : Aϕ(j) → Bj (j ∈ J = SB) is epic

in Set (see 6.3 in [18]). This characterization shows that wellpoweredness and
cowellpoweredness of Set give cowellpoweredness of ΠSet. Finally, ΠSet has a
(single-object) generator, namely the triple (1, ∅, ∅): the singleton set 1 and (one
copy of ) the empty set are needed to distinguish distinct morphisms f, g : A→ B

in ΠSet with Sf = Sg, and two copies of ∅ are needed to distinguish f and g in
case Sf 6= Sg.
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3.6 Proposition. The functor SA : (ΠA)
op → Set

– has a left adjoint LA if A has a terminal object;
– has a right adjoint RA if A has a multi-initial object.

Proof: For 1 terminal in A and every set I, let LAI = (1)I be the constant
I-indexed family with value 1. Then idI : I → SALAI serves as an SA-universal
arrow. For an initial object O = (Ot)t∈T in ΠA and every set I, let RAI =
(Oi)(t,i)∈T×I . Then the projection SARAI → I is an SA-couniversal arrow. �

3.7 Theorem. A category A is multitotal if and only if ΠA is total.

Proof: We need to prove necessity (see 3.3). To this end we assume A to be
multitotal and prove totality of ΠA by checking condition 2.1(ii). Hence, let
H : D → ΠA be a small-partitioned diagram in ΠA. From 3.6 one has adjoint
situations

LSet ⊣ SSet and SA ⊣ RA ,

and we can form
H = L

op
SetS

op
A H : D → ΠSet.

By adjointness, for all X ∈ ΠSet there are canonical isomorphisms

(X ↓ H) ∼= (SSetX ↓ SopA H) ∼= (RASSetX ↓ H),

so that H must be small-partitioned since H is. Consequently, colimH exists in
ΠSet, by 3.5. This is a limit of H

op
in (ΠSet)op, which is preserved by the right

adjoint functor SSet. Since

SSetH
op
= SAH

op,

we see that a limit of SAH
op exists in Set.

In order to see that colimH exists in ΠA, according to Lemma 2.5 it is sufficient
to show that for every α ∈ K = limSAH

op in Set, the diagram Hα : D → A
has a multicolimit in A. In fact, since A is multitotal, thanks to 3.2 it suffices
to prove that Hα is small-partitioned. Hence, given A ∈ A, we must show that
A ↓ Hα has only a small set of connected components.
Let O = (Ot)t∈T be initial in ΠA and form A = A × O in ΠA. Every object

(D, f), with f : A → HαD, of (A ↓ Hα) defines an object (D, f) of (A ↓ H),
as follows: for each i ∈ SAHD − {αD}, let f i : Ot → (HD)i be the morphism
determined by initiality of O, and for i = αD let f i = f . Since H is small-
partitioned, (A ↓ H) has only a set of connected components. Hence, it now
suffices to show that, for any pair of objects (D, f), (D′, f ′) in (A ↓ Hα), any
zig-zag of (A ↓ H) between (D, f), (D′, f ′) gives a zig-zag of (A ↓ Hα) between
(D, f), (D′, f ′).
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Consider the first step of the zig-zag between f , f ′, which is given by one of
the following commutative triangles:

(2)

A
f

~~||
||

||
|| g1

!!C
CC

CC
CC

C

HD
Hd1 // HD1

A
f

~~||
||

||
|| g1

!!C
CC

CC
CC

C

HD HD1
Hd1oo

(a) Case g1 = Hd1 · f . Since (SAHd1)(αD1) = αD , we know that SAg1 =

SAf · SAHd1 takes αD1 to the index of A. Hence, the morphism (g1)αD1 : A→

(HD1)αD1 = HαD1 gives us the first step of the zig-zag between (D, f), (D
′, f ′).

(b) Case f = Hd1 ·g1. Since (SAHd1)(αD) = αD1 , we know that, again, SAg1
takes αD1 to the index of A. Hence, also in this case (g1)αD1 gives the first step

of the zig-zag between (D, f), (D′, f ′).

Inductively one finishes the proof of the last claim, so that the proof of the
Theorem is complete. �

3.8 Corollary ([18]). Every multitotal category A is connectively hypercom-
plete, that is, every connected diagram H : D → A for which limA(A,H−) exists
in Set for all A ∈ A, has a limit in A.

Proof: With 3.7 and 2.2, ΠA is total and therefore hypercomplete. Consider a
connected diagramH : D → A with the indicated property; equivalently, with the
property that there is only a small set of cones ∆A → H for every A ∈ A. Since
D is connected, it is easy to see that there is only a small set of cones ∆A→ JAH

for every A ∈ ΠA, so that (Li)i∈I = limJAH exists in ΠA. Again, connectedness
of D determines a unique index i0 such that Li0 = limH . �

Corollary. Every multitotal category A has equalizers, pullbacks and intersec-
tions of (arbitrarily large) families of monomorphisms.

3.9. Theorem 3.7 makes it easy to establish the interrelationship between multi-
total categories and multisolid functors:

Theorem. Let U : A → X be a functor. Then:

(1) if X is multitotal and U multisolid, then also A is multitotal;
(2) if A is multitotal and U faithful and right multiadjoint, then U is multi-
solid.

Proof: (1) The hypotheses together with Theorem 3.7 imply that ΠX is total
and ΠU : ΠA → ΠX is solid, so that ΠA is total, see Theorem 2.5. Hence, A is
multitotal.

(2) Using again Theorem 3.7 we see that ΠA is total and ΠU is faithful and
right adjoint, by hypothesis, so that ΠU is solid by Theorem 2.5. Hence, U is
multisolid. �
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3.10. If A has a generator G, one may apply Proposition 2.6 and then Theo-
rem 3.9(1) to the canonical functor A → SetG to obtain:

Corollary. Every cowellpowered category with a generator and multicolimits is

multitotal.

In the next section, we study multitotal categories with various types of gen-
erators.

4. Multitotal categories with generators

4.1. Recall that a generator G of A is strong if a morphism f : A → B in A is
an isomorphism whenever all maps A(G, f) : A(G,A) → A(G,B) are bijective,
G ∈ G; in other words, if the canonical functor A → SetG is conservative. In
order to relate a (strong) generator of a category A to the category ΠA, denote
by O an initial object of ΠA (i.e., a multi-initial object of A), provided that it
exists. For every A ∈ A, we put A = A × O (product in ΠA). For G a set of
objects in A, let

G = {G | G ∈ G} ∪ {O ×O};

and for H a set of objects in ΠA, let H1 be the set of objects of A which are
components of objects in H. Then we have the following:

Lemma. (1) If G is a (strong) generator of A and if A has a multi-initial
object, then G is a (strong) generator of ΠA.
(2) If H is a (strong) generator of ΠA, then H1 is a (strong) generator of A.

Proof: (1) If G is a generator of A and if p, q : A→ B are distinct morphisms of
ΠA, then there is k ∈ SB such that either Sp(k) 6= Sq(k), or Sp(k) = l = Sq(k)
and pk 6= qk : Al → Bk. In the former case, consider h : O × O → A with
Sh(Sp(k)) 6= Sh(Sq(k)), then ph 6= qh; in the latter case, choose h0 : G → Al
with pkh0 6= qkh0 and G ∈ G, and let h : G→ A be a morphism with l-component
h0, then ph 6= qh.
If G is a strong generator of A and if f : A → B is a morphism in ΠA such

that ΠA(G, f) is bijective for all G ∈ G, then (a) Sf is bijective since, on the
one hand, the bijectivity of ΠA(O × O, f) is clearly equivalent to the bijectivity
of Setop(2, Sf), and, on the other hand, Setop(2, Sf) is surjective (injective) iff
Sf is injective (surjective, respectively); and (b) each component fk of f is an
isomorphism since, thanks to the morphisms from G×O, G ∈ G, to B, A(G, fk)
is bijective. Thus f is an isomorphism, hence, G is a strong generator.

(2) If H is a generator of ΠA and p, q : A → B are distinct morphisms of A,
choose h : H → A with ph 6= qh in ΠA. The unique component h1 : H1 → A

of h then fulfills ph1 6= qh1 and H1 ∈ H1. If H is a strong generator of ΠA, it
follows easily that also H1 is a strong generator of A, from the observation that,
given H ∈ H and a morphism f : A → B in A, ΠA(H, f) is essentially the map
∐i∈SHA(Hi, f). �
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4.2. We use the notation of [GU] and denote by S̃et any small-indexed discrete
power of Set.

Theorem. The following conditions on a category A are equivalent:

(i) A is multitotal and has a generator,
(ii) ΠA is total and has a generator,

(iii) ΠA admits a solid functor into S̃et,

(iv) A admits a multisolid functor into S̃et.

Proof: (i)⇒(ii) by 3.7 and 4.1(1). (ii)⇒(iii) by (2) of Theorem 2.3. (iii)⇒(iv):
A is always multireflective in ΠA; hence, composition of the solid functor ΠA →

S̃et with JA gives a multisolid functor A → S̃et. (iv)⇒(i): A is multitotal by

3.9(1); furthermore, since ΠA is solid over ΠS̃et and since ΠS̃et has a generator
by 4.1(1), also ΠA and then A has a generator, by 4.1(2). �

4.3 Corollary. The following conditions on a category A are equivalent:

(i) A is multitotal and has a strong generator,
(ii) ΠA is total and has a strong generator,

(iii) ΠA admits a solid, conservative functor into S̃et,

(iv) A admits a multisolid, conservative functor into S̃et.

Proof: Thanks to the strong generator part of Lemma 4.1, one can mimic the
proof of 4.2. �

4.4. A generator G of A is regular if the canonical functor A → SetG reflects
regular epimorphisms; equivalently, f : A → B in A is a regular epimorphism
whenever every map A(G, f), G ∈ G, is surjective.

Remark. Every cocomplete category with a regular generator is total, see [4].
These are, by [3], precisely the reflective subcategories of monadic categories

over S̃et.

Lemma.

(1) Let A have a multi-initial object. Then:
a. A morphism f : A → B in ΠA is a regular epimorphism if its
components are regular epimorphisms in A and if Sf is injective;
these conditions are also necessary wheneverA has a terminal object.

b. If G is a regular generator of A, then G is a regular generator of ΠA.
(2) If H is a regular generator of ΠA, then H1 is a regular generator of A.

Proof: (1)a. Put ϕ = Sf . By hypothesis, each fj is a coequalizer of a pair
pj , qj : Kj → Aϕ(j) in A. Put I = SA, J = SB, and K = (Kj)j∈J and define

p, q : K×O×O→ A by letting Sp map I−ϕ(J) into the first copy of SO and Sq
into the second one. Then f is a coequalizer of p, q in ΠA. Conversely, assuming
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f to be the coequalizer of some pair g, h : L → A in ΠA, we first consider j1,
j2 ∈ J with ϕ(j1) = ϕ(j2) = i. With any commutative square

Bj1

))SSSSSSSSS

Ai

fj1
55kkkkkkkkk

fj2
))SSSSSSSSS C

Bj2

55kkkkkkkkk

in A (which certainly exists when A has a terminal object) one obtains morphisms
s, t : B → C in ΠA with sf = tf , hence s = t and then j1 = j2. Injectivity of ϕ
now gives that each fj is a coequalizer of gϕ(j), hϕ(j) in A.

(1)b. and (2) follow from an easy analysis of the proof of 4.1. �

Remark. For categories A which do not have a terminal object the converse
implication of (1)a. above is false, in general: suppose that a pair p, q : A → B

in A has a multicoequalizer ck : B → Ck(k ∈ K) in A. Then the corresponding
coequalizer c : B → C = (Ck)k∈K in ΠA is a regular epimorphism and Sc is a
constant function.

4.5 Theorem. The following conditions on a category A are equivalent:

(i) A is multitotal and has a regular generator;
(ii) A is multicocomplete and has a regular generator;
(iii) ΠA is cocomplete and has a regular generator;

(iv) ΠA admits a solid functor into S̃et which reflects regular epimorphisms;
(v) A is equivalent to a multireflective subcategory of a monadic category

over S̃et;

(vi) A admits a multisolid functor into S̃et which reflects regular epimor-
phisms.

Proof: (i)⇒(ii) is trivial, and (ii)⇒(iii) follows from 4.4(2). (iii)⇒(iv): In the
presence of a regular generator, the cocomplete category ΠA is actually total
(see Remark 4.4), so that 2.3(2) becomes applicable. (iv)⇒(v): Since ΠA has
coequalizers, it is equivalent to a full reflective subcategory of a monadic category

over S̃et (see also [3]); statement (v) follows since A is multireflective in ΠA.

(v)⇒(vi): The forgetful functor of a monadic category over S̃et is solid and reflects
regular epimorphisms. One easily shows that the latter statement remains true if
we restrict the functor to a multireflective subcategory. (vi)⇒(i): In order to see
that A has a regular generator, one uses 4.4(1) to show that when the multisolid

functor U : A → S̃et reflects regular epimorphisms, the same is true for the solid

functor ΠU : ΠA → ΠS̃et, so that the existence of a regular generator in ΠS̃et
implies the same for ΠA; now one applies 4.4(2) again. �
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5. Product completions and dense generators

5.1. Recall that a generator G of A is said to be dense provided that the full
subcategory of A generated by G (which we denote also by G) is dense in A, that
is, every object A of A is a canonical colimit of the forgetful functor DA : (G ↓
A)→ A.
In the previous section, we related several types of generators of a category A

to the category ΠA, and this enabled us to obtain results on multitotal categories
analogous to the ones of [3] for total categories. Similarly to (2) of Lemma 4.1,
in the case of dense generators, we have the following:

Lemma. If H is a dense generator of ΠA, then H1 is a dense generator of A.

Proof: Let A be an object in A and let D1 : (H1 ↓ A) → A and D : (H ↓
A)→ ΠA be the corresponding canonical diagrams into A and ΠA, respectively.
If γ : D1 → ∆B is a cocone for D1, define γ : D → ∆B by considering, for
each ΠA-morphism h : H → A with H ∈ H, the morphism γh : H → B such

that
(
(γh)∗ : H(Sγh)(∗) → B

)
=

(
γh∗ : H(Sh)(∗) → B

)
. It is easy to show that

γ is a cocone for D. Thus, there exists a unique morphism w : A → B such
that w · h = γh for every h : H → A with H ∈ H. It is now easily verified that
w : A → B is also the unique morphism which fulfills the equality w · g = γg for

every g : G→ A with G ∈ H1. �

5.2. However, for dense generators there is no analogous statement to (1) of
Lemma 4.1. More precisely, we shall show next that the existence of a dense
generator of ΠA in the presence of a dense generator ofA depends on the following
large-cardinal axiom:

(M) There do not exist arbitrarily large measurable cardinals.

The statement (M) means that we can find a cardinal ρ such that no cardinal
larger or equal to ρ is measurable, or, equivalently, every ultrafilter closed under
intersections of less then ρ members contains a singleton set (see A.5 in [2]).

Remark. Recall that a functor F : A → B is called coinitial (the dual of cofinal)
provided that for every object B of B the comma-category (F ↓ B) is connected;
this implies that for every diagram G : B → X we have colimG = colimG · F
(more precisely, if (cB : GB → C)B∈Ob(B) is a colimit of G, then (cFA : GFA→

C)A∈Ob(A) is a colimit of G · F ).

Theorem. The following assertions are equivalent:

(i) ΠA has a dense generator, for every category A with a dense generator
and a multi-initial object;

(ii) ΠI has a dense generator (with I the terminal category);
(iii) the set-theoretic axiom (M) holds.

Proof: Since ΠI = Setop, we have (ii)⇔(iii); this was proved by J. Isbell in
[10], by showing that, for any cardinal ρ, the sets of cardinality less than ρ form
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a codense cogenerator of Set if and only if no cardinal ≥ ρ is measurable. As
(i)⇒(ii) is trivial, (iii)⇒(i) remains to be shown. Let G be a dense generator of
A, and let O = (Ot)t∈T be a multi-initial object of A. By hypothesis, there is a
cardinal number ρ such that ρ̂ = {I | card I < ρ} is a codense in Set. Without
loss of generality, we may assume Ot ∈ G for all t ∈ T and ρ > max{cardT,ℵ0}.
We claim that

Gρ = {G ∈ ΠA | card(SG) < ρ and Gi ∈ G for all i ∈ SG}

is dense in ΠA. Hence, for every A ∈ ΠA, we must show that A is a colimit of
the canonical diagram DA : (G

ρ ↓ A) → ΠA. For that we use Lemma 2.5 and
first show that SD

op
A has limit SA in Set.

In fact, we have a commutative diagram

(Gρ ↓ A)op
D
op
A //

SA
��

(ΠA)op

S

��
(SA ↓ ρ̂)

DSA // Set

with SA induced by S. Since limDSA = SA (canonically), it suffices to show
that SA is coinitial. Hence, for every object (J, ϕ : SA→ J) in (SA ↓ ρ̂) we must
show that the comma category (SA ↓ (J, ϕ)) is connected. In fact, we can define
a morphism cϕ : O

J → A by

(cϕ)k : O
J

pϕ(k)
−−−→ O

!Ak−−→ Ak

for every k ∈ SA (where pϕ(k) is a projection and !Ak is determined by initiality

of O in ΠA). Hence, we have an object (OJ , cϕ) ∈ (Gρ ↓ A), and the diagram

SOJ = T × J
π2 // J

SA

Scϕ

ffMMMMMMMMMM
ϕ

>>}}}}}}}}

commutes. This means that ((OJ , cϕ), π2) is an object of (SA ↓ (J, ϕ)); in fact,
it is weakly initial in that category, as we shall show next. Given any object
((G, f), ψ) in (SA ↓ (J, ϕ)), so that ψ : SA(G, f) → (J, ϕ) is a morphism in

(SA ↓ ρ̂), we claim that the morphism dψ : O
J → G with

(dψ)i : O
J

pψ(i)
−−−→ O

!Gi−−→ Gi
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for all i ∈ SG makes the following diagrams commute:

SG
Sdψ //

ψ
&&MMMMMMMMMMMM SOJ

π2
xxpppppppppppp

J

SA

Sf

]]<<<<<<<<<<<<<<<<<
ϕ

OO Scϕ

@@�����������������

G

f

��:
::

::
::

::
::

::
::

: OJ
dψoo

cϕ

����
��

��
��

��
��

��
��

A

This is obvious for the diagram on the left, while initiality of O in ΠA implies
commutativity of the right-hand diagram. Consequently we have a morphism
dψ : ((O

J , cϕ), π2) → ((G, f), ψ) in (SA ↓ (J, ϕ)). This concludes the proof of

limSD
op
A = SA.

According to Lemma 2.5, it now suffices to show that for every k ∈ SA, Ak is
the canonical colimit of the diagram Dk : (G

ρ ↓ A)→ A, (G, f) 7→ G(Sf)(k). But

Dk factors as
(Gρ ↓ A)

Dk //

Fk
##HH

HH
HH

HH
HH

HH
A

(G ↓ Ak)

DAk

>>|||||||||||

with Fk : (G, f) 7→ (G(Sf)(k), fk). Since, by hypothesis, Ak is the canonical

colimit ofDAk , it suffices to show that Fk is cofinal in order to finish the proof. We
show that, given any object (H, g) ∈ (G ↓ Ak), the comma category ((H, g) ↓ Fk)

is connected. Let g(k) : H×O → A be the ΠA-morphism with (g(k))k = g : H →

Ak and (g
k)l =!Al : O → Al for all l 6= k. Then 1H : (H, g) → Fk(H × O, g(k))

is a morphism in (G ↓ Ak), so ((H × O, g(k)), 1H) is an object in ((H, g) ↓ Fk).
Consider another object ((G, f), h) in that category; denote i = (Sf)(k). We
analyse two cases:

(a) (Sf)−1({i}) = {k}. Thus one can define a ΠA-morphism h(k) : H × O → G

as above, and since fk · h = g one has f · h(k) = g(k). Consequently, h(k) :

(H ×O, g(k))→ (G, f) is a morphism in (Gρ ↓ A) with f · Fkh
(k) = g; hence, we

have h(k) : ((H ×O, g(k)), 1H)→ ((G, f), h) in ((H, g) ↓ Fk).

(b) (Sf)−1({i}) 6= {k}. We show that ((G, f), h) belongs to the same connected
component of the category ((H, g) ↓ Fk) as an object ((G, f), h) which is of type
(a), so the proof will be complete. Put G = G × Gi and let f : G × Gi → A be
the obvious morphism such that f l = (f · π1)l for all l 6= k, where π1 is the first
projection of G×Gi and (Sf)

−1(i) = {k}, and put h = h. Since fk ·h = fk ·h = g,
((G, f), h) is an object in ((H, g) ↓ Fk). Let t : G→ G be the ΠA-morphism such
that St identifies the two copies of i of SG, and all components of t are identities.
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Then we have that f · t = f , so t : (G, f) → (G, f) is a morphism in (Gρ ↓ A);
furthermore, Fkt · h = h, thus we have a morphism t : ((G, f), h)→ ((G, f), h) in
((H, g) ↓ Fk). �

5.3 Remark. The dense generator of ΠA obtained in 5.2 from a dense generator
of a category A with a multi-initial object (in the presence of the axiom (M))
is distinct from the set G = {G × O | G ∈ G} ∪ {O × O} used in Section 4.
(We have seen there that G is a (strong or regular) generator of ΠA whenever A
has a multi-initial object O and a (strong or regular, respectively) generator G.)
Actually, we can prove that the category ΠSet does not have a dense generator
of the form 1×O plus OJ , J ∈ J (assuming that J is dense in Setop). Consider
A = (X1, X2) where X1 = X2 = 1. The canonical diagram D of A consists of

(a) some copies of OJ ;
(b) four copies of 1×O indexed by the obvious four morphisms f : 1×O → A

determined by Sf : {1, 2} → {1, 2} uniquely.

Each of the four copies of 1 × O is connected with the objects of type (a) by

morphisms OJ → 1×O, but there is no morphism in the opposite direction. The
colimit of the canonical diagram is, by Lemma 2.5,

colimD = (colimDϕ)ϕ∈limSD.

If J were dense in Setop, we would have, for the subdiagramD′ of D of all objects
OJ , limSD′ = {1, 2} (canonically). Thanks to the morphisms OJ → 1 × O, we
have limSD = limSD′. It is easy to see that the choice of index 1 gives a
diagram with two distinct copies of 1 without any morphism between them; thus
colimD1 will have two elements. Analogously, colimD2 has two elements. Hence
(A1, A2) 6= (colimD1, colimD2).

5.4. Although the existence of a dense generator of A does not guarantee the
same for ΠA, the relationship between dense generators and multitotal categories
is similar to the one for totality:

Theorem. The following statements are equivalent for a category A:

(i) A is multitotal with a dense generator;

(ii) A is multisolid over S̃et and has a dense generator;
(iii) A is equivalent to a full multireflective subcategory of a ranked monadic

category over S̃et;
(iv) A is a full multireflective subcategory of a locally presentable category;
(v) A is a full multireflective subcategory of a Grothendieck topos.

Proof: One proceeds similarly as in the total case, see [3]. �

Remark. From the Theorem above and from 6.16 of [2], it follows that multi-
total categories with dense generators are precisely the locally multipresentable
categories, provided that the set-theoretic Vopěnka Principle holds.
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