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Bounds for the spectral radius of positive operators

Roman Drnovšek

Abstract. Let f be a non-zero positive vector of a Banach lattice L, and let T be a
positive linear operator on L with the spectral radius r(T ). We find some groups of
assumptions on L, T and f under which the inequalities

sup{c ≥ 0 : Tf ≥ c f} ≤ r(T ) ≤ inf{c ≥ 0 : Tf ≤ c f}

hold. An application of our results gives simple upper and lower bounds for the spectral
radius of a product of positive operators in terms of positive eigenvectors corresponding
to the spectral radii of given operators. We thus extend the matrix result obtained by
Johnson and Bru which was the motivation for this paper.

Keywords: Banach lattices, positive operators, spectral radius

Classification: 46B42, 47B65, 47A10

1. Introduction and preliminaries

Let L be a (real or complex) Banach lattice of dimension at least two. Let L+

denote the cone of positive elements in L. The norm of L is said to be a weakly
Fatou norm if there exists a finite constant k ≥ 1 such that 0 ≤ fτ ↑ f in L implies
that ‖f‖ ≤ k ·supτ ‖fτ‖, and the norm of L is order continuous if ‖fα‖ ↓ 0 for any
downwards directed system fα ↓ 0 in L. A Banach lattice L is Dedekind complete
if every non-empty subset which is bounded from above has a supremum. An
element f ∈ L+ is called a quasi-interior point of L+ if the principal ideal If
(generated in L by f) is dense in L, and it is said to be a weak order unit if the
principal band Bf (generated in L by f) is equal to L. The Banach lattice of all
bounded linear functionals on L is denoted by L∗. A functional ϕ ∈ L∗ is called
σ-order continuous if it follows from fn ↓ 0 in L that infn |ϕ(fn)| = 0, and it
is called order continuous if infα |ϕ(fα)| = 0 for any downwards directed system
fα ↓ 0 in L. Let L′ denote the band of all order continuous functionals in L∗.
The Banach lattice L′ separates points of L whenever for each non-zero f ∈ L
there exists ϕ ∈ L′ such that ϕ(f) 6= 0. A functional ϕ ∈ L∗ is said to be strictly
positive if ϕ(f) > 0 for all f ≥ 0, f 6= 0.
By B(L) we denote the space of all bounded linear operators on a Banach

lattice L. An operator T ∈ B(L) is called positive if Tf ≥ 0 for all f ≥ 0.
A positive operator T ∈ B(L) is called σ-order continuous whenever it follows
from fn ↓ 0 in L that Tfn ↓ 0 in L, and it is called order continuous if it follows
from fα ↓ 0 in L that Tfα ↓ 0 in L. An operator T ∈ B(L) is called power-compact
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if Tn is a compact operator for some n ∈ N. For T ∈ B(L), let T ∗ denote the
adjoint operator in B(L∗). The spectral radius of an operator T is denoted by
r(T ). Here, in case of a real Banach lattice, we understand the spectral radius
of the canonical extension of T to the complexification of L. A positive operator
T ∈ B(L) is called band irreducible, if T leaves no band in L invariant except {0}
and L itself, and it is said to be irreducible, if T leaves no closed ideal in L invariant
except {0} and L itself. For notions not explained in the text, we refer the reader
to the books of Zaanen [12], Schaefer [9], and Aliprantis, Burkinshaw [1].
Throughout the paper L denotes a Banach lattice. Let f, g ∈ L+, and assume

that g is non-zero. Define the following sets

∆(f, g) = {c ≥ 0 : f ≥ c g} and Σ(f, g) = {c ≥ 0 : f ≤ c g}.

Since L is Archimedean, one can show easily that ∆(f, g) is a non-empty bounded
closed interval, and so we can define δ(f, g) = max∆(f, g). Also, we set σ(f, g) =
minΣ(f, g) if Σ(f, g) is non-empty, and σ(f, g) =∞ otherwise.
Let T be a positive operator on L, and let f ∈ L+ be a non-zero element. The

numbers δ(Tf, f) and σ(Tf, f) are known as the lower and upper Collatz-Wielandt
numbers , respectively. In the present paper we study the following inequalities

δ(Tf, f) ≤ r(T ) ≤ σ(Tf, f).

These inequalities were considered by some authors, even in more general setting
of ordered Banach space (see [7], [2] and [8]). While the left-hand inequality
always holds, the right-hand inequality is not true even under the assumption
that f is a quasi-interior point of L+. We obtain some results under various
assumptions on L, T and f . An application of our results gives simple upper
and lower bounds for the spectral radius of a product of positive operators. We
thus extend the matrix result obtained by Johnson and Bru [5] which was our
motivation for this work.
Let T be a order continuous operator on L. It is easily seen that L′ is invariant

under the adjoint T ∗. The restriction T ∗|L′ of T ∗ to L′ is denoted by T ′.

Proposition 1.1. Assume that L is a Dedekind complete lattice with a weakly
Fatou norm, and that L′ separates points of L. If T is an order continuous
operator on L, then r(T ′) = r(T ).

Proof: It follows from Theorem 107.7 of [12] (see also the equality (2) on p. 393
of [12]) that L can be (not necessarily isometrically) embedded into (L′)′ as a
Banach space. Then we have

r(T ) ≥ r(T ′) ≥ r((T ′)′) ≥ r(T ),

so that r(T ′) = r(T ). �
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Proposition 1.2. Let f be a weak unit of L+. Let I be the closed ideal of L
generated by f . Then the positive operator γ : L′ → I ′ defined by γ(ϕ) = ϕ|I is
an isometric isomorphism of Banach lattices.

Proof: Assume that ϕ|I = 0 for some ϕ ∈ L′ and choose g ∈ L+. Put gn =
inf{g, nf} for each n ∈ N. Then gn ∈ I and (g − gn) ↓ 0. Since ϕ ∈ L′, we have
infn |ϕ(g − gn)| = 0, and so ϕ(g) = 0. Now the equality L = L+ − L+ implies
that ϕ = 0. Hence γ is injective.
To prove surjectivity of γ, pick ψ ∈ I ′. By [12, Theorem 83.7] there exist

positive functionals ϕ1, ϕ2 ∈ L′ such that ϕ1|I = ψ+ and ϕ2|I = ψ−. Then
ϕ := ϕ1 − ϕ2 ∈ L′ and ϕ|I = ψ. The last consideration also shows that the
operator γ−1 is positive. Indeed, if ψ is positive, then its extension ϕ is also
positive. It is well-known that this implies that γ is a Riesz isomorphism (see e.g.
[1, Theorem 7.3]).
Let us show that γ is isometric. Pick ϕ ∈ L′. It is clear that ‖ϕ|I‖ ≤ ‖ϕ‖. So,

we have to show that ‖ϕ|I‖ ≥ ‖ϕ‖. Choose ε > 0 and g ∈ L with norm 1 such that
|ϕ(g)| ≥ ‖ϕ‖ − ε. Define un = inf{g+, nf}, vn = inf{g−, nf}, and gn = un − vn,
Then gn ∈ I for each n ∈ N, and the sequence {gn}n∈N order converges to g,
since un ↑ g+ in vn ↑ g−. From |gn| ≤ un + vn ≤ g+ + g− = |g| it follows that
‖gn‖ ≤ ‖g‖ = 1. We thus have |ϕ(gn)| ≤ ‖ϕ|I‖‖gn‖ ≤ ‖ϕ|I‖. On the other
hand, since infn |ϕ(g − gn)| = 0, there is n ∈ N such that |ϕ(gn)| ≥ |ϕ(g)| − ε.
We therefore conclude that ‖ϕ|I‖ ≥ |ϕ(g)| − ε ≥ ‖ϕ‖ − 2 ε. This shows that
‖ϕ|I‖ ≥ ‖ϕ‖. �

The following result was actually shown in the proof of Theorem 5 of [4].
Theorem 1.3. Let T > 0 be a σ-order continuous, power-compact operator
on L with r(T ) > 0. Then there exists a σ-order continuous, non-zero positive
functional ϕ ∈ L∗ satisfying T ∗ϕ = r(T )ϕ. If, in addition, T is band irreducible,
ϕ can be chosen to be strictly positive.

In [4] the following extension of the famous Jentzsch-Perron theorem is also
proved.

Theorem 1.4. Let T be a positive σ-order continuous, band irreducible, power-
compact operator on L. Then r(T ) > 0 and r(T ) is an eigenvalue of T of algebraic
multiplicity one. Furthermore, the eigenspace contains a weak order unit.

2. On Collatz-Wielandt bounds

The first part of the next result is known even in more general setting of ordered
Banach spaces (see [6], [7], [2], and [8]). We include here its proof because of its
simplicity. The second part is concerned with the case of equality, and it seems
to be new.

Theorem 2.1. Let T be a positive operator on a Banach lattice L, and let
f ∈ L+ be a non-zero element. Then

δ(Tf, f) ≤ r(T ).
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If T is a σ-order continuous, band irreducible, power-compact operator, then
there is an equality in this inequality if and only if f is a positive eigenfunction
of T pertaining to r(T ).

Proof: By a successive application of T ≥ 0 to the inequality Tf ≥ δf , where
δ = δ(Tf, f), we obtain Tnf ≥ δnf for all n ∈ N, so that δn‖f‖ ≤ ‖Tnf‖ ≤
‖Tn‖‖f‖. This gives δ ≤ ‖Tn‖1/n for all n ∈ N, and hence δ ≤ r(T ).
To prove the second assertion, assume that δ(Tf, f) = r(T ), that is Tf −

r(T )f ≥ 0. By Theorem 1.4, r(T ) > 0, and so Theorem 1.3 gives a strictly
positive functional ϕ ∈ L∗ satisfying T ∗ϕ = r(T )ϕ. We then have

ϕ(Tf − r(T )f) = (T ∗ϕ)f − r(T )ϕ(f) = 0.

It follows that Tf = r(T )f , and the theorem is proved. �

Motivated by Proposition 2 of [3] we introduce the following class of operators.
We say that a positive operator T on L has property (p) if r(T ) belongs to the
closure of the set (−∞, r(T )) ∩ ρ(T ), where ρ(T ) denotes the resolvent set of T .
Theorem 2.2. Suppose that L is a Dedekind complete lattice with a weakly
Fatou norm, and that L′ separates points of L. Let T be an order continuous
positive operator on L having property (p), and let f ∈ L+ be a weak order unit.
Then

r(T ) ≤ σ(Tf, f).

Proof: We assume on the contrary that σ := σ(Tf, f) < r(T ). The principal
ideal If = {g ∈ L : |g| ≤ λf for some λ ≥ 0} is an AM-space under the norm
defined by ‖g‖0 := σ(|g|, f). If g ∈ If ∩L+, then Tg ≤ ‖g‖0Tf ≤ σ‖g‖0f implies
that If is invariant under T and ‖Tg‖0 ≤ σ‖g‖0. Denoting by T0 the restriction
of T on If , we have ‖T0‖0 ≤ σ. Therefore, for any λ ∈ (σ, r(T )), the resolvent
(λ − T0)

−1 exists and it is a positive operator on If . By the assumption there
exists λ ∈ (σ, r(T )) that belongs to the resolvent set of T . Let I be the closure
of If in L. Then the resolvent (λ − T |I)−1 is a positive operator on I. This
implies that λ ≥ r(T |I) (see e.g. [9, Exercise V.5] or [10, Lemma 2]). We claim
that r(T |I) = r(T ) which then gives a contradiction. By Proposition 1.2 the map
ϕ→ ϕ|I is an isometric isomorphism of Banach lattices L′ and I ′. It follows that

r(T ′) = r((T |I )′) ≤ r(T |I) ≤ r(T ).

Since r(T ′) = r(T ) by Proposition 1.1, we conclude that r(T |I) = r(T ) as desired.
�

The following example shows that in Theorem 2.2 the assumption that T is an
order continuous operator cannot be omitted.

Example 2.3. Let φ be a Banach limit on l∞, and e = (1, 1, 1, . . . ) ∈ l∞. By
Tf = φ(f) e we define a positive compact operator on l∞ with r(T ) = φ(e) = 1.
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Letting f = (1, 1/2, 1/3, 1/4, . . .) ∈ l∞, we have Tf = 0, and so 0 = σ(Tf, f) <
r(T ) = 1.

The following result on the upper bound for the spectral radius follows also
from [3, Proposition 2] and [2, Proposition 2.3].

Theorem 2.4. Let T be a positive operator on L having property (p), and let
f ∈ L+ be a quasi-interior point. Then

r(T ) ≤ σ(Tf, f).

Proof: The proof goes along the lines of the last proof, except that the equality
r(T |I) = r(T ) is trivially true, since I = L by the assumption on f . �

Theorem 2.4 is not true without the assumption that T has property (p).

Example 2.5. The backward shift S on l2 defined by S(x1, x2, x3, . . . ) =
(x2, x3, . . . ) has the spectral radius r(S) = 1. However, f = (1, 1/2, 1/4, 1/8, . . .)
∈ l2 is a quasi-interior point satisfying σ(Sf, f) = 1/2.

Under a strong assumption on T we obtain the following

Theorem 2.6. Let T be a positive σ-order continuous, power-compact operator
on a Banach lattice L, and let f ∈ L+ be a weak order unit. Then

r(T ) ≤ σ(Tf, f).

If, in addition, T is a band irreducible operator, then there is an equality if and
only if f is an eigenfunction of T corresponding to r(T ).

Proof: We clearly may assume that r(T ) > 0. Suppose on the contrary that
σ(Tf, f) = r(T ) − c for some c > 0. By Theorem 1.3 there exists a non-zero
σ-order continuous functional ϕ ∈ L∗ such that T ∗ϕ = r(T )ϕ. Then

(1) ϕ(r(T )f − Tf) = r(T )ϕ(f) − (T ∗ϕ)f = 0.

Since r(T )f − Tf ≥ cf , we obtain ϕ(f) = 0 which easily yields ϕ(g) = 0 for
all g ∈ Bf as ϕ is σ-order continuous. Since Bf = L, we get ϕ = 0 which is
a contradiction.
Suppose now that T is a band irreducible operator. Then r(T ) > 0 by The-

orem 1.4. If there is an equality in the inequality, it follows from (1) that
r(T )f − Tf = 0, i.e. f is an eigenelement of T pertaining to r(T ), because ϕ
can be chosen to be strictly positive by Theorem 1.3. �

An application of Theorem 1.4 gives the following consequence of Theorems 2.1
and 2.6 that is known under some similar groups of assumptions, even in the
ordered Banach space setting (see [6], [7], [2], and [8]).
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Theorem 2.7. Let L be a Banach lattice with non-empty setW of all weak order
units. Let T be a σ-order continuous, band irreducible, power-compact operator
on L. Then

r(T ) = max {δ(Tf, f) : f ∈W} = min {σ(Tf, f) : f ∈ W} .
Moreover, either extremum is attained for some f ∈ W if and only if f ∈ W is

the (essentially unique) eigenelement of T .

Theorem 2.7 can be viewed as a generalization of the minimax theorem for the
spectral radius of an irreducible non-negative matrix (due to Wielandt [11]). The
special case of Theorem 2.7 is following

Corollary 2.8. Let (X,µ) be a σ-finite measure space, and let T be a power-
compact operator on Lp(X,µ) (1 ≤ p ≤ ∞). If p <∞, assume T to be irreducible;
if p = ∞, assume T to be the adjoint of an irreducible operator on L1(X,µ). If
W denotes the set of all, almost everywhere positive functions in Lp(X,µ), then

r(T ) = max {δ(Tf, f) : f ∈W} = min {σ(Tf, f) : f ∈ W} .
Moreover, either extremum is attained for some f ∈ W if and only if f ∈ W is

the (essentially unique) eigenfunction of T .

Proof: Since every closed ideal of Lp(X,µ) (1 ≤ p < ∞) is a band, every
positive operator on Lp(X,µ) is σ-order continuous (see [1, Theorem 4.8]). The
same argument shows that T is irreducible. The assumptions of Theorem 2.7 are
satisfied in the case p = ∞ as well. Indeed, it can be shown that the adjoint
of a σ-order continuous, (band) irreducible operator on L1(X,µ) is also σ-order
continuous and band irreducible. �

Essentially, Corollary 2.8 was proved in Schaefer [10, Theorem 1], because it is
not difficult to show that the numbers introduced there coincide with the Collatz-
Wielandt numbers. (The proof of this surprising fact is left to the reader.) The
papers [10] and [4] influenced us that we considered the Banach lattice setting.
As mentioned before, the same upper bounds for the spectral radius of positive
operators are also studied in the ordered Banach space setting, where similar
assumptions on L, T , and f are considered. However, it seems that Theorems 2.2,
2.6 and 2.7 are not special cases of those results.

3. Bounds for the spectral radius of a product of positive operators

In general, there is no relation between the spectral radius of a product of pos-
itive operators and the product of the respective spectral radii. In this section
Theorems 2.1, 2.2, 2.4 and 2.6 are applied in order to obtain simple upper and
lower bounds for the spectral radius of a product of positive operators in terms of
positive eigenvectors corresponding to the spectral radii of given operators. We
thus generalize the matrix result due to Johnson and Bru [5].
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Theorem 3.1. Let T1, T2, . . . , Tn be positive operators on a Banach lattice L
with strictly positive spectral radii. Suppose that there exist non-zero positive

elements f1, f2, . . . , fn such that Ti fi = r(Ti) fi for i = 1, 2, . . . , n. Then

δ(fn, fn−1) δ(fn−1, fn−2) . . . δ(f2, f1) δ(f1, fn) ≤
r(T1T2 . . . Tn)

r(T1) r(T2) . . . r(Tn)
.

Proof: Since f ≥ δ(f, g) g for any non-zero positive elements f, g ∈ L, we have

(T1 . . . Tn)fn = r(Tn) (T1 . . . Tn−1)fn ≥ r(Tn) δ(fn, fn−1) (T1 . . . Tn−1)fn−1

≥ r(Tn) r(Tn−1) δ(fn, fn−1) δ(fn−1, fn−2) (T1 . . . Tn−2)fn−2 ≥ . . .

. . . ≥ r(Tn) r(Tn−1) . . . r(T2) δ(fn, fn−1) δ(fn−1, fn−2) . . . δ(f2, f1)T1f1

≥ r(T1) r(T2) . . . r(Tn) δ(fn, fn−1) δ(fn−1, fn−2) . . . δ(f2, f1) δ(f1, fn) fn.

It follows that

δ((T1 . . . Tn)fn, fn) ≥ r(T1) . . . r(Tn) δ(fn, fn−1) . . . δ(f2, f1) δ(f1, fn).

Theorem 2.1 now completes the proof. �

It should be noted that Theorem 3.1 (as Theorem 2.1) can be generalized to
the ordered Banach space setting. However, the situation with the upper bound
for the spectral radius is much more involved.

Theorem 3.2. Let T1, T2, . . . , Tn be positive operators on a Banach lattice L
with strictly positive spectral radii, and let f1, f2, . . . , fn be weak order units of
L such that Ti fi = r(Ti) fi for i = 1, 2, . . . , n. Let the operator T = T1T2 . . . Tn

have property (p). Assume also that either

(i) L is a Dedekind complete lattice with a weakly Fatou norm, L′ separates

points of L, and T is σ-order continuous, or
(ii) at least one of the elements f1, . . . , fn is a quasi-interior point of L

+, or

(iii) T is σ-order continuous power-compact operator.

Then

r(T1T2 . . . Tn)

r(T1) r(T2) . . . r(Tn)
≤ σ(fn, fn−1)σ(fn−1, fn−2) . . . σ(f2, f1)σ(f1, fn).

Proof: We clearly may assume that σ(fi+1, fi) < ∞ for all i = 1, 2, . . . , n
(letting fn+1 = f1). It follows that in case (ii) all of the elements {fk}n

k=1 are

quasi-interior points of L+. Then the calculation is similar as in the proof of
Theorem 3.1 except for that we use the inequality f ≤ σ(f, g) g (where f and
g are weak order units with σ(f, g) < ∞), the direction of the inequalities is
reversed, and the upper bound is a consequence of Theorems 2.2, 2.4 and 2.6.

�
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The following examples show that in Theorem 3.2 we cannot drop neither the
conditions (i), (ii), and (iii) nor the assumption that T has property (p). It turned
out that seeking for counterexamples was not an easy job.

Example 3.3. Let e, f and T be as in Example 2.3. Let L be the Banach lattice
l∞ × l∞ with the norm ‖(u, v)‖ = max{‖u‖∞, ‖v‖∞}. Define the operators T1
and T2 on L by

T1 =

[

I T
0 I

]

and T2 =

[

I 0
T I

]

,

where I denotes the identity operator on l∞. Then (f, f) is a weak order unit
of L which is an eigenvector of both T1 and T2 corresponding to the eigenvalue
r(T1) = r(T2) = 1. It is easy to see that ((1 +

√
5)e, 2e) is an eigenvector of T1T2

belonging to the eigenvalue (3 +
√
5)/2, so that r(T1T2) ≥ (3 +

√
5)/2 > 1. Since

T1T2 is a compact perturbation of the identity on L, it has property (p).

Example 3.4. Let f and S be as in Example 2.5, and let operators T1 and T2 on
L := l2 × l2 be defined by

T1 =

[

S S
0 I

]

and T2 =

[

I 0
S S

]

,

where I is the identity on l2. Then (f, f) is a quasi-interior point of L+ that is an
eigenvector of both T1 and T2 corresponding to the eigenvalue r(T1) = r(T2) = 1.
Letting g = (1, 0.9, 0.92, 0.93, . . . ) ∈ l2 a short computation shows that (3g, 2g) is
an eigenvector of T1T2 pertaining to the eigenvalue 9/4. Hence r(T1T2) ≥ 9/4 > 1.
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