Surjective factorization of holomorphic mappings

MANUEL GONZÁLEZ, JOAQUÍN M. GUTIÉRREZ

Abstract. We characterize the holomorphic mappings f between complex Banach spaces that may be written in the form $f = T \circ g$, where g is another holomorphic mapping and T belongs to a closed surjective operator ideal.

Keywords: factorization, holomorphic mapping between Banach spaces, operator ideal *Classification:* Primary 46G20; Secondary 47D50

1. Introduction and preliminary results

In recent years many authors [1], [2], [7], [9], [10], [15], [19], [20] have studied conditions on a holomorphic mapping f between complex Banach spaces so that it may be written in the form either $f = g \circ T$ or $f = T \circ g$, where g is another holomorphic mapping and T a (linear bounded) operator belonging to certain classes of operators.

A rather thorough study of the factorization of the form $f = g \circ T$, where T is in a closed injective operator ideal, was carried out by the authors in [10]. In the present paper we analyze the case $f = T \circ g$.

If $f = T \circ g$, with T in the ideal of compact operators, and g is holomorphic on a Banach space E then, since g is locally bounded, f will be "locally compact" in the sense that every $x \in E$ has a neighborhood V_x such that $f(V_x)$ is relatively compact. It is proved in [2] that the converse also holds: every locally compact holomorphic mapping f can be written in the form $f = T \circ g$, with T a compact operator. Similar results were given in [20] for the ideal of weakly compact operators, in [15] for the Rosenthal operators, and in [19] for the Asplund operators. We extend this type of factorization to every closed surjective operator ideal.

Throughout, E, F and G will denote complex Banach spaces, and \mathbb{N} will be the set of natural numbers. We use B_E for the closed unit ball of E, and B(x,r)for the open ball of radius r centered at x. If $A \subset E$, then $\overline{\Gamma}(A)$ denotes the absolutely convex, closed hull of A, and if f is a mapping on E, then

$$||f||_A := \sup\{|f(x)| : x \in A\}.$$

We denote by $\mathcal{L}(E, F)$ the space of all operators from E into F, endowed with the usual operator norm. A mapping $P: E \to F$ is a k-homogeneous (continuous)

The first named author was supported in part by DGICYT Grant PB 97–0349 (Spain).

The second named author was supported in part by DGICYT Grant PB 96-0607 (Spain).

polynomial if there is a k-linear continuous mapping $A: E \times \overset{(k)}{\ldots} \times E \to F$ such that $P(x) = A(x, \ldots, x)$ for all $x \in E$. The space of all such polynomials is denoted by $\mathcal{P}(^{k}E, F)$. A mapping $f: E \to F$ is holomorphic if, for each $x \in E$, there are r > 0 and a sequence (P_k) with $P_k \in \mathcal{P}(^{k}E, F)$ such that

$$f(y) = \sum_{k=0}^{\infty} P_k(y-x)$$

uniformly for ||y - x|| < r. We use the notation

$$P_k = \frac{1}{k!} \, d^k f(x),$$

while $\mathcal{H}(E, F)$ stands for the space of all holomorphic mappings from E into F.

We say that a subset $A \subset E$ is *circled* if for every $x \in A$ and complex λ with $|\lambda| = 1$, we have $\lambda x \in A$.

For a general introduction to polynomials and holomorphic mappings, the reader is referred to [5], [16], [17]. The definition and general properties of operator ideals may be seen in [18].

An operator ideal \mathcal{U} is said to be *injective* ([18, 4.6.9]) if, given an operator $T \in \mathcal{L}(E, F)$ and an injective isomorphism $i : F \to G$, we have that $T \in \mathcal{U}$ whenever $iT \in \mathcal{U}$. The ideal \mathcal{U} is *surjective* ([18, 4.7.9]) if, given $T \in \mathcal{L}(E, F)$ and a surjective operator $q : G \to E$, we have that $T \in \mathcal{U}$ whenever $Tq \in \mathcal{U}$. We say that \mathcal{U} is *closed* ([18, 4.2.4]) if for all E and F, the space $\mathcal{U}(E, F) := \{T \in \mathcal{L}(E, F) : T \in \mathcal{U}\}$ is closed in $\mathcal{L}(E, F)$.

Given an operator $T \in \mathcal{L}(E, F)$, a procedure is described in [4] to construct a Banach space Y and operators $k \in \mathcal{L}(E, Y)$ and $j \in \mathcal{L}(Y, F)$ so that T = jk. We shall refer to this construction as the DFJP *factorization*. It is shown in [12, Propositions 1.6 and 1.7] (see also [8, Proposition 2.2] for simple statement and proof) that given an operator $T \in \mathcal{L}(E, F)$ and a closed operator ideal \mathcal{U} ,

(a) if \mathcal{U} is injective and $T \in \mathcal{U}$, then $k \in \mathcal{U}$;

(b) if \mathcal{U} is surjective and $T \in \mathcal{U}$, then $j \in \mathcal{U}$.

We say that \mathcal{U} is *factorizable* if, for every $T \in \mathcal{U}(E, F)$, there are a Banach space Y and operators $k \in \mathcal{L}(E, Y)$ and $j \in \mathcal{L}(Y, F)$ so that T = jk and the identity I_Y of the space Y belongs to \mathcal{U} .

We now give a list of closed operator ideals which are injective, surjective or factorizable. We recall the definition of the most commonly used, and give a reference for the others.

An operator $T \in \mathcal{L}(E, F)$ is (weakly) compact if $T(B_E)$ is a relatively (weakly) compact subset of F; T is (weakly) completely continuous if it takes weak Cauchy sequences in E into (weakly) convergent sequences in F; T is Rosenthal if every sequence in $T(B_E)$ has a weak Cauchy subsequence; T is unconditionally converging if it takes weakly unconditionally Cauchy series in E into unconditionally convergent series in F.

Closed operator ideals	Injective	Surjective	Factorizable
compact operators	Yes	Yes	No
weakly compact	Yes	Yes	Yes
Rosenthal	Yes	Yes	Yes
completely continuous	Yes	No	No
weakly completely continuous	Yes	No	No
unconditionally converging	Yes	No	No
Banach-Saks [13,§3]	Yes	Yes	Yes
weakly Banach-Saks [13, §3]	Yes	No	No
strictly singular [18, 1.9]	Yes	No	No
separable range	Yes	Yes	Yes
strictly cosingular [18, 1.10]	No	Yes	No
limited [3]	No	Yes	No
Grothendieck [6]	No	Yes	No
decomposing (Asplund) [18, 24.4]	Yes	Yes	Yes
Radon-Nikodým [18, 24.2]	Yes	No	No
absolutely continuous $[14, \S3]$	Yes	No	No

The results on this list may be found in [18] and the other references given, for the injective and surjective case. The factorizable case may be seen in [12].

If \mathcal{U} is an operator ideal, the *dual ideal* \mathcal{U}^d is the ideal of all operators T such that the adjoint T^* belongs to \mathcal{U} . Easily, we have:

 \mathcal{U} is closed injective $\implies \mathcal{U}^d$ is closed surjective

 \mathcal{U} is closed surjective $\implies \mathcal{U}^d$ is closed injective

The list above might therefore be completed with some more dual ideals.

Moreover, to each $T \in \mathcal{L}(E, F)$ we can associate an operator $T^q : E^{**}/E \to F^{**}/F$ given by $T^q(x^{**}+E) = T^{**}(x^{**}) + F$. Let $\mathcal{U}^q := \{T \in \mathcal{L}(E,F) : T^q \in \mathcal{U}\}$. Then, if \mathcal{U} is injective (resp. surjective, closed), so is \mathcal{U}^q ([8, Theorem 1.6]).

Remark 1. There is another notion of factorizable operator ideal which may be used. We say that \mathcal{U} is DFJP factorizable ([8, Definition 2.3]) if, for every $T \in \mathcal{U}$, the identity of the intermediate space in the DFJP factorization of T belongs to \mathcal{U} . Clearly, every DFJP factorizable operator ideal is factorizable. The following example shows that the converse is not true. Let \mathcal{A} be the ideal of all the operators that factor through a subspace of c_0 . Clearly, \mathcal{A} is factorizable. Consider the operator $T : \ell_2 \to \ell_2$ given by $T((x_n)) := (x_n/n)$. We have $T \in \mathcal{A}$. The intermediate space in the DFJP factorization is an infinite dimensional reflexive space. Clearly, the identity map on it does not belong to \mathcal{A} .

All the factorizable ideals on the table above are DFJP factorizable ([8]). Note also that, if \mathcal{U} is DFJP factorizable, then so are \mathcal{U}^d and \mathcal{U}^q ([8]).

2. Surjective factorization

In this section, we study the factorizations in the form $T \circ g$, with $T \in \mathcal{U}$, where \mathcal{U} is a closed surjective operator ideal.

Lemma 2 ([13, Proposition 2.9]). Given a closed surjective operator ideal \mathcal{U} , let $S \in \mathcal{L}(E, F)$ and suppose that for every $\epsilon > 0$ there are a Banach space D_{ϵ} and an operator $T_{\epsilon} \in \mathcal{U}(D_{\epsilon}, F)$ such that

$$S(B_E) \subseteq T_{\epsilon}(B_{D_{\epsilon}}) + \epsilon B_F.$$

Then, $S \in \mathcal{U}$.

We denote by $\mathcal{C}_{\mathcal{U}}(E)$ the collection of all $A \subset E$ so that $A \subseteq T(B_Z)$ for some Banach space Z and some operator $T \in \mathcal{U}(Z, E)$ (see [21]).

The following probably well-known properties of $\mathcal{C}_{\mathcal{U}}$ will be needed:

Proposition 3. Let \mathcal{U} be a closed surjective operator ideal. Then:

- (a) if $A \in \mathcal{C}_{\mathcal{U}}(E)$ and $B \subset A$, then $B \in \mathcal{C}_{\mathcal{U}}(E)$;
- (b) if $A_1, \ldots, A_n \in \mathcal{C}_{\mathcal{U}}(E)$, then $\bigcup_{i=1}^n A_i \in \mathcal{C}_{\mathcal{U}}(E)$ and $\sum_{i=1}^n A_i \in \mathcal{C}_{\mathcal{U}}(E)$;
- (c) if $A \subset E$ is bounded and, for every $\epsilon > 0$, there is a set $A_{\epsilon} \in \mathcal{C}_{\mathcal{U}}(E)$ such that $A \subseteq A_{\epsilon} + \epsilon B_E$, then $A \in \mathcal{C}_{\mathcal{U}}(E)$.
- (d) if $A \in \mathcal{C}_{\mathcal{U}}(E)$, then $\overline{\Gamma}(A) \in \mathcal{C}_{\mathcal{U}}(E)$;

PROOF: (a) is trivial and (b) is easy. Both are true without any assumption on the operator ideal \mathcal{U} .

(c) For $A \subset E$ bounded, consider the operator

$$T: \ell_1(A) \longrightarrow E$$
 given by $T((\lambda_x)_{x \in A}) = \sum_{x \in A} \lambda_x x.$

Given $\epsilon > 0$, there is $A_{\epsilon} \in \mathcal{C}_{\mathcal{U}}(E)$ such that $A \subseteq A_{\epsilon} + \epsilon B_E$. Therefore,

$$A \subseteq T(B_{\ell_1(A)}) \subseteq \overline{\Gamma}(A) \subseteq \Gamma(A) + \epsilon B_E \subseteq \Gamma(A_\epsilon) + 2\epsilon B_E.$$

Clearly, $\Gamma(A_{\epsilon}) \in \mathcal{C}_{\mathcal{U}}(E)$. Hence, $T \in \mathcal{U}$ (by Lemma 2), and $A \in \mathcal{C}_{\mathcal{U}}(E)$.

(d) If $A \in \mathcal{C}_{\mathcal{U}}(E)$, there is a space Z and $T \in \mathcal{U}(Z, E)$ such that $A \subseteq T(B_Z)$. Therefore, for all $\epsilon > 0$,

$$\overline{\Gamma}(A) \subseteq \overline{T(B_Z)} \subseteq T(B_Z) + \epsilon B_E.$$

Now, it is enough to apply part (c).

We shall denote by $\mathcal{H}_{\mathcal{U}}(E, F)$ the space of all $f \in \mathcal{H}(E, F)$ such that each $x \in E$ has a neighborhood V_x with $f(V_x) \in \mathcal{C}_{\mathcal{U}}(F)$. Easily, a polynomial $P \in \mathcal{P}(^kE, F)$ belongs to $\mathcal{H}_{\mathcal{U}}(E, F)$ if and only if $P(B_E) \in \mathcal{C}_{\mathcal{U}}(F)$. The set of all such polynomials will be denoted by $\mathcal{P}_{\mathcal{U}}(^kE, F)$.

The following result is an easy consequence of the Hahn-Banach theorem and the Cauchy inequality

Lemma 4 ([20, Lemma 3.1]). Given $f \in \mathcal{H}(E, F)$, a circled subset $U \subset E$, and $x \in E$, we have

$$\frac{1}{k!} d^k f(x)(U) \subseteq \overline{\Gamma}(f(x+U))$$

for every $k \in \mathbb{N}$.

Proposition 5. Let \mathcal{U} be a closed surjective operator ideal, and $f \in \mathcal{H}(E, F)$. The following assertions are equivalent:

- (a) $f \in \mathcal{H}_{\mathcal{U}}(E,F);$
- (b) there is a zero neighborhood $V \subset E$ such that $f(V) \in \mathcal{C}_{\mathcal{U}}(F)$;
- (c) for every $k \in \mathbb{N}$ and every $x \in E$, we have that $d^k f(x) \in \mathcal{P}_{\mathcal{U}}({}^k\!E, F)$;
- (d) for every $k \in \mathbb{N}$, we have that $d^k f(0) \in \mathcal{P}_{\mathcal{U}}(^kE, F)$.

PROOF: (a) \Rightarrow (c) and (b) \Rightarrow (d) follow from Lemma 4.

(d) \Rightarrow (a). Let $x \in E$. There is $\epsilon > 0$ such that

$$f(y) = \sum_{k=0}^{\infty} \frac{1}{k!} d^k f(0)(y)$$

uniformly for $y \in B(x, \epsilon)$ ([17, §7, Proposition 1]). By Proposition 3 (b), for each $m \in \mathbb{N}$, we have

$$\left\{\sum_{k=0}^{m} \frac{1}{k!} d^{k} f(0)(y) : y \in B(x,\epsilon)\right\} \in \mathcal{C}_{\mathcal{U}}(F).$$

Using the uniform convergence on $B(x, \epsilon)$, and Proposition 3 (c), we conclude that $f(B(x, \epsilon)) \in \mathcal{C}_{\mathcal{U}}(F)$.

(a) \Rightarrow (b) and (c) \Rightarrow (d) are trivial.

If A is a closed convex balanced, bounded subset of F, F_A will denote the Banach space obtained by taking the linear span of A with the norm given by its Minkowski functional.

Theorem 6. Let \mathcal{U} be a closed surjective operator ideal, and $f \in \mathcal{H}(E, F)$. The following assertions are equivalent:

- (a) $f \in \mathcal{H}_{\mathcal{U}}(E,F);$
- (b) there is a closed convex, balanced subset $K \in \mathcal{C}_{\mathcal{U}}(F)$ such that f is a holomorphic mapping from E into F_K ;
- (c) there is a Banach space G, a mapping $g \in \mathcal{H}(E,G)$ and an operator $T \in \mathcal{U}(G,F)$ such that $f = T \circ g$.

PROOF: (a) \Rightarrow (b) follows the ideas in the proof of [2, Proposition 3.5] and [20, Theorem 3.7].

For each $m \in \mathbb{N}$ and $x \in E$, define

$$A_m(x) := \left\{ \lambda y : y \in B\left(x, \frac{1}{m}\right) \text{ and } |\lambda| \le 1 \right\}$$

and

$$U_m := \bigcup \left\{ B\left(x, \frac{1}{m}\right) : \|x\| \le m \text{ and } \|f\|_{A_m(x)} \le m \right\}.$$

For each $x \in E$ there is a neighborhood of the compact set $\{\lambda x : |\lambda| \leq 1\}$ on which f is bounded. Hence, there is $m \in \mathbb{N}$ so that $||f||_{A_m(x)} \leq m$, which shows that $E = \bigcup_{m=1}^{\infty} U_m$.

Let W_m be the balanced hull of U_m . Since the sets $A_m(x)$ are balanced, we have $|f(x)| \leq m$ for all $x \in W_m$. Let $V_m := 2^{-1}W_m$. We have $E = \bigcup_{m=1}^{\infty} V_m$ and hence

(1)
$$f(E) = \bigcup_{m=1}^{\infty} f(V_m).$$

For each $k, m \in \mathbb{N}$, define

$$K_{mk} := \bar{\Gamma}\left(\frac{1}{k!} d^k f(0)(W_m)\right) \in \mathcal{C}_{\mathcal{U}}(F).$$

By Proposition 3, we obtain that the set

$$K_m := \left\{ \sum_{k=0}^{\infty} 2^{-k} z_k : z_k \in K_{mk} \right\}$$

belongs to $\mathcal{C}_{\mathcal{U}}(F)$. Easily, $f(V_m) \subseteq K_m$. Hence $f(V_m) \in \mathcal{C}_{\mathcal{U}}(F)$ for all $m \in \mathbb{N}$. By Proposition 3, we can select numbers $\beta_m > 0$ with $\sum \beta_m < \infty$ so that

$$K := \bar{\Gamma}\Big(\bigcup_{m=1}^{\infty} \beta_m f(V_m)\Big) \in \mathcal{C}_{\mathcal{U}}(F).$$

It follows from (1) that f maps E into F_K .

It remains to show that $f \in \mathcal{H}(E, F_K)$. Let $x \in E$. Easily, there are $\epsilon > 0$ and $r \in \mathbb{N}$ such that $f(B(x, 2\epsilon)) \subseteq rK$. By Lemma 4,

(2)
$$\frac{1}{k!} d^k f(x) \left(B(0, 2\epsilon) \right) \subseteq rK$$

for all $k \in \mathbb{N}$. Now, for each $n \in \mathbb{N}$ and $a \in B(0, \epsilon)$, we have

$$f(x+a) - \sum_{k=0}^{n} \frac{1}{k!} d^{k} f(x)(a) = 2^{-n} \sum_{k=n+1}^{\infty} 2^{n-k} \frac{1}{k!} d^{k} f(x)(2a).$$

Since K is convex and closed, we get from (2) that

$$\sum_{k=n+1}^{\infty} 2^{n-k} \frac{1}{k!} d^k f(x)(2a) \in rK.$$

Hence,

$$f(x+a) - \sum_{k=0}^{n} \frac{1}{k!} d^{k} f(x)(a) \in 2^{-n} rK,$$

and so, the F_K -norm of the left hand side is less than or equal to $2^{-n}r$, for all $a \in B(0, \epsilon)$. Thus, f is holomorphic.

(b) \Rightarrow (c). It is enough to note that, by Lemma 2, the natural inclusion $F_K \rightarrow F$ belongs to \mathcal{U} .

(c) \Rightarrow (a). Each $x \in E$ has a neighborhood V_x such that $g(V_x)$ is bounded in G. Hence, $f(V_x) = T(g(V_x)) \in \mathcal{C}_{\mathcal{U}}(F)$.

Theorem 7. Let \mathcal{U} be a closed surjective, factorizable operator ideal and take a mapping $f \in \mathcal{H}(E, F)$. Then $f \in \mathcal{H}_{\mathcal{U}}(E, F)$ if and only if there are a Banach space G, a mapping $g \in \mathcal{H}(E, G)$ and $T \in \mathcal{U}(G, F)$ such that $I_G \in \mathcal{U}$ and $f = T \circ g$.

Remark 8. Theorem 7 implies that, if \mathcal{U} is the ideal of weakly compact (resp. Rosenthal, Banach-Saks or Asplund) operators and $f \in \mathcal{H}_{\mathcal{U}}(E, F)$, then f factors through a Banach space G which is reflexive (resp. contains a copy of ℓ_1 , has the Banach-Saks property or is Asplund).

Moreover, if $\mathcal{U} = \{T : T^q \text{ has separable range}\}$, then G is isomorphic to $G_1 \times G_2$, with G_1^{**} separable and G_2 reflexive ([22]). If $\mathcal{U} = \{T : T^* \text{ is Rosenthal}\}$, then G contains no copy of ℓ_1 and no quotient isomorphic to c_0 ([11]).

References

- Aron R.M., Galindo P., Weakly compact multilinear mappings, Proc. Edinburgh Math. Soc. 40 (1997), 181–192.
- [2] Aron R.M., Schottenloher M., Compact holomorphic mappings on Banach spaces and the approximation property, J. Funct. Anal. 21 (1976), 7–30.
- [3] Bourgain J., Diestel J., Limited operators and strict cosingularity, Math. Nachr. 119 (1984), 55-58.
- [4] Davis W.J., Figiel T., Johnson W.B., Pełczyński A., Factoring weakly compact operators, J. Funct. Anal. 17 (1974), 311–327.
- [5] Dineen S., Complex Analysis in Locally Convex Spaces, Math. Studies 57, North-Holland, Amsterdam, 1981.
- [6] Domański P., Lindström M., Schlüchtermann G., Grothendieck operators on tensor products, Proc. Amer. Math. Soc. 125 (1997), 2285–2291.
- [7] Geiss S., Ein Faktorisierungssatz f
 ür multilineare Funktionale, Math. Nachr. 134 (1987), 149–159.
- [8] González M., Dual results of factorization for operators, Ann. Acad. Sci. Fenn. Ser. A I Math. 18 (1993), 3–11.
- [9] González M., Gutiérrez J.M., Factorization of weakly continuous holomorphic mappings, Studia Math. 118 (1996), 117–133.

- [10] González M., Gutiérrez J.M., Injective factorization of holomorphic mappings, Proc. Amer. Math. Soc. 127 (1999), 1715–1721.
- [11] González M., Onieva V.M., Lifting results for sequences in Banach spaces, Math. Proc. Cambridge Philos. Soc. 105 (1989), 117–121.
- [12] Heinrich S., Closed operator ideals and interpolation, J. Funct. Anal. 35 (1980), 397-411.
- [13] Jarchow H., Weakly compact operators on C(K) and C*-algebras, in: H. Hogbe-Nlend (ed.), Functional Analysis and its Applications, World Sci., Singapore, 1988, pp. 263–299.
- [14] Jarchow H., Matter U., On weakly compact operators on C(K)-spaces, in: N. Kalton and E. Saab (eds.), Banach Spaces (Proc., Missouri 1984), Lecture Notes in Math. 1166, Springer, Berlin, 1985, pp. 80–88.
- [15] Lindström M., On compact and bounding holomorphic mappings, Proc. Amer. Math. Soc. 105 (1989), 356–361.
- [16] Mujica J., Complex Analysis in Banach Spaces, Math. Studies 120, North-Holland, Amsterdam, 1986.
- [17] Nachbin L., Topology on Spaces of Holomorphic Mappings, Ergeb. Math. Grenzgeb. 47, Springer, Berlin, 1969.
- [18] Pietsch A., Operator Ideals, North-Holland Math. Library 20, North-Holland, Amsterdam, 1980.
- [19] Robertson N., Asplund operators and holomorphic maps, Manuscripta Math. 75 (1992), 25-34.
- [20] Ryan R.A., Weakly compact holomorphic mappings on Banach spaces, Pacific J. Math. 131 (1988), 179–190.
- [21] Stephani I., Generating systems of sets and quotients of surjective operator ideals, Math. Nachr. 99 (1980), 13–27.
- [22] Valdivia M., On a class of Banach spaces, Studia Math. 60 (1977), 11-13.

DEPARTAMENTO DE MATEMÁTICAS, FACULTAD DE CIENCIAS, UNIVERSIDAD DE CANTABRIA, 39071 SANTANDER, SPAIN

E-mail: gonzalem@ccaix3.unican.es

DEPARTAMENTO DE MATEMÁTICA APLICADA, ETS DE INGENIEROS INDUSTRIALES, UNIVERSI-DAD POLITÉCNICA DE MADRID, C. JOSÉ GUTIÉRREZ ABASCAL 2, 28006 MADRID, SPAIN

E-mail: jgutierrez@etsii.upm.es

(Received August 30, 1999, revised November 4, 1999)