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Locally minimal topological groups and their
embeddings into products of o-bounded groups

TARAS BANAKH

Abstract. It is proven that an infinite-dimensional Banach space (considered as an Abe-
lian topological group) is not topologically isomorphic to a subgroup of a product of
o-compact (or more generally, o-bounded) topological groups. This answers a question
of M. Tkachenko.
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In this paper we answer in the negative the following question of M. Tkachenko
posed in [Tk, Problem 3.1]: Does every second countable topological group embed
into a product of o-compact groups? Namely, we show that an infinite-dimensional
Banach space (considered as an Abelian topological group) admits no such an
embedding. In fact, we prove a bit more: no infinite-dimensional Banach space
admits an embedding into a product of o-bounded groups.

Let us recall some definitions, see [Tk]. All topological groups considered in
this note are Hausdorff. A subset B of a topological group G is defined to be
totally bounded if for every neighborhood U of the origin in G there exists a finite
set FF C G such that B C (F-U)N (U - F). A topological group G is defined to
be o-bounded if G is a countable union G = [ J72; By, of totally bounded subsets.

A topological group G is defined to be Ng-bounded if for every neighborhood
U of the origin in G there exists a subset F' C G with |F| <Xgand G = F - U,
see [Gu]. It is known that each second countable group is Rg-bounded and each
Ng-bounded group embeds into a product of second countable groups ([Gu]).

A topological group G is called o-bounded if for every sequence (Up)new of
neighborhoods of the origin in G there exists a sequence (Fy, )new of finite subsets
in G such that G = J,,c,, Fnn - Un, see [Tk, 3.9], [He].

According to [Tk] for a topological group G we have the implications

(o-bounded)=-(o-bounded)=-(Rp-bounded),

no of which can be reversed. The considered three classes of groups are closed
with respect to the operations of taking subgroups and continuous homomorphic
images. M. Tkachenko asked in [Tk, Problem 3.1] if every Rp-bounded group
embeds isomorphically into a product of o-bounded groups.

The following theorem answers this question in the negative.
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Main Theorem. An infinite-dimensional Banach space (considered as an Abe-
lian topological group) admits no isomorphic embedding into a product of o-
bounded groups.

As a by-product of the proof we get a characterization of Lie groups in terms of
embeddings into products of o-bounded groups as well as a theorem on equivalence
of o-boundedness and o-boundedness for groups which are continuous homomor-
phic images of second countable Weil complete groups. A topological group is
called Weil complete if it is complete in its left (equivalently, right) uniformity.

Interplay between o-boundedness and o-boundedness
The main result of this section is

Equivalence Theorem. Suppose that a topological group G is a continuous
homomorphic image of a second countable Weil complete group. The group G is
o-bounded if and only if it is o-bounded.

PrOOF: By hypothesis there exists a surjective continuous group homomorphism
h : H — G, where H is a second countable Weil complete group. Let d be any
left-invariant complete metric on H and B(e) = {x € H : d(x,e) < €}, ¢ > 0,
denote the closed e-ball around the neutral element e of the group H.

The “if” part of the theorem is trivial. To prove the “only if” part, suppose G
is an o-bounded group. We claim that the image h(U) of some neighborhood U
of the identity in H is left-bounded in H, i.e., for every neighborhood W of the
identity in G there is a finite subset F' C G with h(U) C F - W.

Assume that it is not so. To get a contradiction, we shall show that the
group G is not o-bounded. For this we shall construct by induction a sequence
(en)?2; C (0,1] of real numbers and a sequence (Up)>2; of neighborhoods of the
origin in G such that

(1) h(B(en/2)) ¢ F - Uy - Ut for any finite set F C G
(2) h(B(en+1)) C Un;
(3) en < ep—1/2.

Let e1 = 1 and assume that for some n numbers 1, ..., &, and neighborhoods
Ui,...,Up—1 satisfying the conditions (1)—(3) have been constructed. By our
assumption, the set h(B(ep/2)) is not left bounded in G. Hence, there exists a
neighborhood W C G of the origin such that h(B(ep/2)) ¢ F - W for any finite
set ' C G. Let Uy, be a neighborhood of the origin in G such that U, - U,jl cWw.
Clearly, the condition (1) is satisfied. Finally, using the continuity of h, choose
any ep+1 to satisfy 0 < ep41 < €p,/2 and h(B(ep+1)) C Up. This finishes the
inductive construction of the sequences (¢5,)52 ; and (Up)o2 ;.

It rests to verify that (Jo2; Fy - Uy # G for any sequence (Fy,)22; of finite
subsets of G. For this, given such a sequence (Fy,), we shall construct inductively
a sequence (xp)>2; of points of the group H such that the following conditions
are satisfied for every n > 1:
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(4) h(zn - B(en)) N Fp—1 - Up—1 = 0;

(5) Znt1 € - B(en/2).

Let 29 = e and assume that for some n > 0 the points g, . .., 2, satisfying (4)
and (5) have been defined. It follows from (1) that h(xy - B(en/2)) ¢ Fn-Up-U;t
and hence there exists a point z,,41 € T, - B(en/2) with h(zp11) & Fn-Un-U; L
Multiplying this by Uy, we get h(zpy1) - Un N Fy, - Up = 0. Then by (2), h(zpt1 -
B(ep+1)) N Fy - Uy = (0. This finishes the construction of the sequence (z,)0 ;.

It follows from (3) and (5) that the sequence (z,)72; is Cauchy with respect
to the metric d and thus converges to some point o, € H. We claim that
Too € Ty, - Blep) for every n > 1. Indeed, using (5) and (3), we get

0 00 - 00 .
d(Too, Tn) SZd(xi,xiH)gZEZ < 2.272_71 .
=n i=n

i=n

Then by (4), h(2oo) ¢ Frn-Up for every n > 1 which implies h(zoo) ¢ Upeq Fn-Un
and G # J,,—1 Fn - Un.

This contradiction shows that the image h(U) of some symmetric neighborhood
U = U~ of the identity in H is left bounded in G. Then for every points z,y € G
the set - h(U) is left bounded while the set z- h(U)NA(U) -y is totally bounded.
Now fix a dense countable subset (dn)new in H. Then H = J; je,,(di-U)N(U -d;)
and consequently, G = h(H) = U; je,,(h(d;) - R(U)) N (R(U) - h(d;)) is a countable
union of totally bounded subsets. (Il

Locally minimal groups

Recall that a topological group G is called minimal if G admits no strictly
weaker Hausdorff group topology.

We define a topological group G to be locally minimal if there exists a neigh-
borhood U of the origin in G such that G admits no strictly weaker Hausdorff
group topology for which U is a neighborhood of the origin.

Clearly, each minimal group is locally minimal. It can be easily shown that
each locally compact group is locally minimal. There are also non-locally compact
locally minimal groups:

Proposition 1. A normed linear space (considered as an Abelian topological
group) is locally minimal.

PROOF: Let X be a normed linear space and let B denote the unit open ball in X
with the center at the origin. Suppose 7 is a weaker Hausdorff group topology on
X such that B is a neighborhood of the origin in (X, 7). To prove our proposition
it suffices to verify that for every n € N the set %B ={reX:|z| < %} is
a neighborhood of the origin in (X, 7). Let U C B be an open neighborhood of
the origin in (X, 7). By the continuity of the group operation on (X, 7), the set
V={zeX :nxeU}isopen (X,7). We claim that V' C %B. Indeed, assuming
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the converse, we would find x € V with ||z| > % Then ||nz|| > 1, a contradiction
with ne € U C B. O

We call a topological group G a group without small subgroups if there exists a
neighborhood of the origin in G containing no non-trivial subgroup. It is easy to
see that each normed space is a group without small subgroups. Locally minimal
groups without small subgroups have the following remarkable property.

Proposition 2. Let G C [[;c7 G; be a subgroup of a product of topological
groups. If G is a locally minimal group without small subgroup, then there
exists a finite subset F' C T such that the projection prp : G — [[;cp G; is an
isomorphic embedding.

PrOOF: Let U be a neighborhood of the origin in G containing no non-trivial
subgroup and V be a neighborhood of the origin in G such that G admits no
strictly weaker Hausdorff group topology for which V remains a neighborhood
of the origin. By definition of the product topology on [[;,.7 Gj, there exists a
finite subset F' C Z and a neighborhood W of the origin e of the group [[,cr G;

such that pr}l(W) C UNV. We claim that the projection prr : G — [[;cp Gi

is an isomorphic embedding. Observe that pr}l(e) C U is a trivial subgroup
of G (by the choice of U) and thus the map prp : G — [[;cp G; is injective.

Then 7 = {pr}l(O) : O is an open subset in [[;,cp G;} is a weaker Hausdorff
group topology on G. Since V is a neighborhood of the origin in (G, 7), the
topology 7 coincides with the original topology of the group G and thus the map
prr : G — [[;cp Gi is an isomorphic embedding. O

Problem. Investigate the class of locally minimal groups.

A characterization of Lie groups

Characterization Theorem. A second countable group G is a Lie group if and
only if the following conditions are satisfied:

(1) G is a locally minimal Weil complete group without small subgroups;
(2) G embeds isomorphically into a product of o-bounded groups.

PrOOF: The “only if” part of the theorem is trivial. To prove the “if” part,
suppose that a second countable group G satisfies the conditions (1)—(2). By
Proposition 2, the group G embeds isomorphically into a finite product Gy x - - - X
Gy, of o-bounded groups. Since subgroups of o-bounded groups are o-bounded,
we may assume that the projection of G on each G; coincides with G;. Then
according to Equivalence Theorem, each G;, being a continuous homomorphic
image of a Weil complete group G, is o-bounded. Consequently, the product
G1 X -+ X Gy, as well as its subgroup G is o-bounded. Now Weil completeness
of G implies that G is o-compact and hence, being second countable, must be
locally compact. Since G has no small subgroups, G is a Lie group according to
the well known Gleason-Montgomery-Zippin Theorem ([Gl], [MZ]). O
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Question. Is Characterization Theorem valid for Raikov complete groups, i.e.,
groups complete with respect to the two-sided uniformity?

Proof of Main Theorem

Suppose that an infinite-dimensional Banach space X embeds into a product
[I;ez Gi of o-bounded groups. The groups G;, being o-bounded, are Ro-bounded.
Then the subgroup X of their product [[;c7 G; is Ro-bounded ([Gu]). Next, the
group X, being metrizable and Ng-bounded, is second countable. Thus X is a sec-
ond countable Weil complete abelian group without small subgroups (see Propo-
sition 1) which embeds into a product of o-bounded groups. By Characterization
Theorem, X must be a Lie group, a contradiction with the infinite-dimensionality
of X. O
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