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On indefinite BV-integrals

B. Bongiorno, U. Darji, W.F. Pfeffer

Abstract. We present an example of a locally BV-integrable function in the real line
whose indefinite integral is not the sum of a locally absolutely continuous function and
a function that is Lipschitz at all but countably many points.
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In 1986 Bruckner, Fleissner and Foran [2] obtained a descriptive definition of a
minimal extension of the Lebesgue integral which integrates the derivative of any
differentiable function. Recently, Bongiorno, Di Piazza and Preiss [1] showed that
this minimal integral can be obtained from McShane’s definition of the Lebesgue
integral [4] by imposing a mild regularity condition on McShane’s partitions.
The one-dimensional BV-integral defined in [5, Definition 13.4.2] lies prop-

erly in between the Lebesgue and Denjoy-Perron integrals [5, Theorem 11.4.5
and Example 12.3.5], and integrates the derivative (defined almost everywhere)
of any function which is pointwise Lipschitz at all but countably many points
[5, Theorem 12.2.5]. Moreover, in dimension one, the BV-integral is obtained
from McShane’s definition of the Lebesgue integral by using McShane’s partitions
consisting of finite unions of compact intervals, and imposing a regularity condi-
tion that is only slightly stronger than that employed in [1]. Thus it is natural
to ask whether the BV-integral could be the minimal extension of the Lebesgue
integral which integrates the derivative of any function that is Lipschitz at all
but countably many points. We show by example the answer to this question is
negative.
By R we denote the set of all real numbers equipped with its usual order and

topology. The diameter and Lebesgue measure of a set E ⊂ R are denoted by
d(E) and |E|, respectively. Unless specified otherwise, all functions considered in
this note are real-valued.
A cell is a compact nondegenerate subinterval of R. A finite nonempty union

of cells is called a figure. We say figures A and B overlap whenever |A ∩ B| > 0.
The perimeter of a figure A, denoted by ‖A‖, is the number of the boundary
points of A; clearly, ‖A‖ equals twice the number of the connected components
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of A. The regularity of a pair (A, x) where A is a figure and x ∈ R is the number

r(A, x) =
|A|

d
(

A ∪ {x}
)

‖A‖
.

If F is a function defined on a figure A and B ⊂ A is a figure whose connected
components are the cells [a1, b1], . . . , [ap, bp], we let

F (B) =

p
∑

i=1

[

F (bi)− F (ai)
]

.

In this way, to each function F defined on A we associate a function defined on
all subfigures of A, which is additive in the obvious way. With no danger of
confusion, we denote both the function of points and the associated function of
figures by the same symbol.
A partition is a collection (possibly empty) of pairs

P =
{

(A1, x1), . . . , (Ap, xp)
}

where A1, . . . , Ap are nonoverlapping figures, and x1, . . . , xp are points (not ne-
cessarily distinct) of R. Given ε > 0 and a function δ defined on a set E ⊂ R, we
say the partition P is

• ε-regular if r(Ai, xi) > ε for i = 1, . . . , p;
• δ-fine if xi ∈ E and d

(

Ai ∪ {xi}
)

< δ(xi) for i = 1, . . . , p.

A gage on a set E ⊂ R is a nonnegative function δ defined on E such that δ(x) > 0
for all but countably many x ∈ E.

Definition 1. A function f defined on R is called locally integrable if there is
a continuous function F defined on R satisfying the following condition: given
ε > 0, we can find a gage δ on the interval

(

−1/ε, 1/ε
)

so that

p
∑

i=1

∣

∣

∣

∣

f(xi)|Ai| − F (Ai)

∣

∣

∣

∣

< ε

for each ε-regular δ-fine partition
{

(A1, x1), . . . , (Ap, xp)
}

.

The function F of Definition 1, which is uniquely determined by f up to an
additive constant, is called the indefinite integral of f . A primitive is a function
defined on R that is the indefinite integral of some locally integrable function.
As each one-dimensional BV set differs from a figure by a negligible set, using

[5, Theorem 12.2.2] and [6, Corollary 4.4], it is easy to see that a function f
defined on R is locally integrable if and only if for each cell A the restriction
f ↾ A is BV-integrable according to [5, Definition 13.4.2]. Thus it follows from
[5, Theorem 12.3.2] that each primitive is differentiable almost everywhere, and
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it is the indefinite integral of its derivative extended arbitrarily to the whole
of R. Moreover, by [5, Theorems 11.4.5 and 12.2.5], locally absolutely continuous
functions and functions that are Lipschitz at all but countably many points are
primitives. Our goal is to show that not every primitive is the sum of these two
types of functions.
If F is a continuous function defined on R and E is a subset of R, let

V∗F (E) = sup
η
inf
δ
sup
P

p
∑

i=1

∣

∣F (Ai)
∣

∣

where η is a positive number, δ is a gage on E, and P =
{

(A1, x1), . . . , (Ap, xp)
}

is
an η-regular δ-fine partition. The number V#F (E) is defined analogously, except
arbitrary gages δ on E are replaced by positive gages δ on E. According to [3,
Lemma 4.9], the extended real-valued functions

V∗F : E 7→ V∗F (E) and V#F : E 7→ V#F (E)

are Borel regular measures in R. Clearly V∗F ≤ V#F , and [7, Theorem 13] implies
the next result.

Proposition 2. A continuous function F defined on R is a primitive if and only

if the measure V∗F is absolutely continuous.

Choose a fixed positive α < 1 so that 3α > 2. Given a cell K = [a, b], define a
continuous function FK on R by the formula

FK(x) = (x − a)α cos

(

π

2
·
|K|2

x − a

)

if a < x < a+ |K|2, and let F (x) = 0 otherwise. Let D be the Cantor ternary set
in the cell [0, 1], and let K be the family of all cells whose interiors are connected
components of the set [0, 1]− D. We show that the continuous function

(1) F =
∑

K∈K

FK

provides the desired example (see Theorem 9 below).

Lemma 3. LetK = [a, b] be a cell with |K| < 1/2, and let η < 1/2 and δ ≤ |K|/2
be positive numbers. There is a constant κ > 0, depending only on η, such that

p
∑

i=1

∣

∣FK(Ai)
∣

∣ < κδα

for each η-regular δ-fine partition
{

(A1, x1), . . . , (Ap, xp)
}

with

{x1, . . . , xp} ∩ (a, b) = ∅ .
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In particular, the measure V#FK is absolutely continuous.

Proof: With no loss of generality we may assume a = 0. Clearly, we only need
to consider an η-regular δ-fine partition

{

(A1, x1), . . . , (Ap, xp)
}

such that each

figure Ai meets the interval (0, b
2). As b < 1/2 and δ ≤ b/2, this implies xi ≤ 0

for i = 1, . . . , p. Moreover, if

Ai =

ki
⋃

j=1

[

ai(j), bi(j)
]

where ai(1) < bi(1) < · · · < ai(ki) < bi(ki), then bi(ki) > 0. The regularity
condition r(Ai, xi) > η implies 2ki < 1/η. Since it suffices to obtain separate
estimates for the partitions

{

(Ai, xi) : ai(1) ≥ 0
}

and
{

(Ai, xi) : ai(1) < 0
}

,

we can split the first part of the proof into the following two cases.

Case 1. Assume ai(1) ≥ 0 for i = 1, . . . , p. Reorder the figures A1, . . . , Ap so
that

(2) b1(k1) < b2(k2) < · · · < bp(kp) < δ,

and fix a positive integer i ≤ p. Since

η < r(Ai, xi) ≤ r(Ai, 0) =
1

ki

ki
∑

j=1

bi(j)− ai(j)

2bi(ki)
,

there is a positive integer ji ≤ ki such that

η <
bi(ji)− ai(ji)

2bi(ki)
.

Thus

(3) 2ηbi(ki) < bi(ji)− ai(ji) ≤ bi(ki)− ai(ji),

and consequently

(4) ai(ji) < (1− 2η)bi(ki).

If bs(ks) ≤ bi(ji) for each positive integer s ≤ i, let si = i; if bs(ks) > bi(ji) for a
positive integer s ≤ i, let si be the least such integer. By inequality (4),

(5) bs(ks) ≤ ai(ji) < (1− 2η)bi(ki)
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whenever 1 ≤ s < si; indeed since s < i, the cells
[

as(ks), bs(ks)
]

and
[

ai(ji), bi(ji)
]

do not overlap. If s is an integer with si ≤ s ≤ i, then

bs(ks) ≥ bsi
(ksi
) ≥ bi(ji)

according to inequality (2), and inequality (3) implies

bs(js)− as(js) > 2ηbs(ks) ≥ 2ηbi(ji) > 2η
[

2ηbi(ki) + ai(ji)
]

≥ 4η2bi(ki).

As
[

asi
(jsi
), bsi

(jsi
)
]

, . . . ,
[

ai(ji), bi(ji)
]

are disjoint subcells of
[

0, bi(ki)
]

, we have

bi(ki) ≥
i
∑

s=si

[

bs(js)− as(js)
]

> (i − si + 1) · 4η
2bi(ki),

and consequently i − si < 1/(4η2) − 1. It follows, there is a positive integer r,
depending only on η, such that i − r < si. Inequality (5) yields

1 ≤ s ≤ i − r =⇒ bs(ks) < (1 − 2η)bi(ki).

Thus letting bi = bi(ki) for i = 1, . . . , p, and bi = 0 for i = 0,−1, . . . , we obtain
bi−r ≤ (1 − 2η)bi for all integers i ≤ p. Proceeding inductively,

(6) bp−kr ≤ (1− 2η)kbp

for k = 0, 1, . . . , and we calculate

(7)

p
∑

i=1

∣

∣FK(Ai)
∣

∣ =

p
∑

i=1

∣

∣

∣

∣

∣

∣

ki
∑

j=1

[

FK

(

bi(j)
)

− FK

(

ai(j)
)

]

∣

∣

∣

∣

∣

∣

≤

p
∑

i=1

ki
∑

j=1

[

∣

∣

∣
FK

(

bi(j)
)

∣

∣

∣
+
∣

∣

∣
FK

(

ai(j)
)

∣

∣

∣

]

≤

p
∑

i=1

ki
∑

j=1

[

bi(j)
α + ai(j)

α
]

≤

p
∑

i=1

ki
∑

j=1

2bα
i

<
1

η

p
∑

i=1

bα
i =

1

η

∞
∑

k=0

p−kr
∑

i=p−(k+1)r+1

bα
i

≤
1

η

∞
∑

k=0

rbα
p−kr < bα

p
r

η

∞
∑

k=0

[

(1− 2η)α
]k

< βδα

where β > 0 is a constant depending only on η.
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Case 2. Assume ai(1) < 0 for i = 1, . . . , p. Since bi > 0, there are unique
figures Ai+ ⊂ [0,+∞) and Ai− ⊂ (−∞, 0] whose union is Ai. After a suitable
reordering, there is an integer q with 0 ≤ q ≤ p such that

r(Ai+, 0)

{

≤ η/2 for i = 1, . . . , q,

> η/2 for i = q + 1, . . . , p.

According to Case 1 applied to the partition
{

(A(q+1)+, 0), . . . , (Ap+, 0)
}

,

p
∑

i=q+1

∣

∣FK(Ai+)
∣

∣ < γδα

where γ > 0 is a constant depending only on η. As

η < r(Ai, xi) ≤ r(Ai+, 0) + r(Ai−, 0),

we see r(Ai−, 0) > η/2 for i = 1, . . . , q. Reorder the figures A1−, . . . , Aq− so
that aq(1) < · · · < a1(1) < 0, and let ai = ai(1) for i = 1, . . . , q and ai = 0 for

i = 0,−1, . . . . Applying Case 1 to the partition
{

(A∗
1−, 0), . . . , (A∗

q−, 0)
}

where

A∗
i− = {−x : x ∈ Ai−}, find a positive integer r′, depending only on η, so that

inequalities analogous to (6) hold:

(8) |aq−kr′ | ≤ (1 − η)k|aq| , k = 0, 1, . . . .

The inequality

ηd
(

Ai+ ∪ {0}
)

‖Ai+‖ < ηd
(

Ai ∪ {xi}
)

‖Ai‖ < |Ai| = |Ai+|+ |Ai−|

<
η

2
d
(

Ai+ ∪ {0}
)

‖Ai+‖+ |Ai−|,

implies

ηbi = ηd
(

Ai+ ∪ {0}
)

≤
η

2
d
(

Ai+ ∪ {0}
)

‖Ai+‖

< |Ai−| ≤ d
(

Ai− ∪ {0}
)

= |ai|.

Calculating as in (7) and employing inequality (8), we obtain

q
∑

i=1

∣

∣FK(Ai+)
∣

∣ <
1

η

q
∑

i=1

bα
i ≤

1

ηα+1

q
∑

i=1

|ai|
α =

1

ηα+1

∞
∑

k=0

q−kr′
∑

i=q−(k+1)r′+1

|ai|
α

≤
1

ηα+1

∞
∑

k=0

r′|aq−kr′|
α < |aq|

α r′

ηα+1

∞
∑

k=0

[

(1− η)α
]k

< γ′δα

where γ′ > 0 is a constant depending only on η. Now it suffices to let κ = γ + γ′.

The first part of the proof implies V#FK

[

R − (a, b)
]

= 0. Since the function
FK is locally absolutely continuous in (a, b), the measure V#FK is absolutely
continuous in (a, b) by [7, Proposition 8]. The lemma follows. �
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Lemma 4. Let K = [a, b] be a cell with |K| < 1/2, and let I1, . . . , In be a

sequence of nonoverlapping cells. Then

n
∑

i=1

∣

∣FK(Ii)
∣

∣ <
2

1− α

(

2 + 3n1−α
)

|K|2α.

Proof: With no loss of generality, we may assume that a = 0 and that each Ii is
a subcell of the cell

[

0, b2
]

. Enlarging the number of the cells Ii by no more than
n+1 cells and reordering them, we may further assume that Ii = [ci−1, ci] where

0 = c0 < c1 < · · · < cm = b2 and m ≤ 2n+ 1.

Let a0 = b2, and for j = 1, 2, . . . , let aj = b2/(2j). Denote by j1 the first positive
integer with aj1 < c1, and let i1 be the largest integer among {1, . . . , m} with
ci1 ≤ aj1−1. If j1 = 1, we stop. If j1 ≥ 2, denote by j2 the first positive integer,
necessarily smaller than j1, with aj2 < ci1+1, and let i2 be the largest integer
among {i1 + 1, . . . , m} with ci2 ≤ aj2−1. Proceeding inductively, we obtain

0 = c0 < aj1 < c1 < · · · ci1 ≤ aj1−1 < · · ·

< aj2 < ci1+1 < · · · ci2 ≤ aj2−1 < · · ·

< · · · < cip = cm = ajp−1 = a0

where 1 ≤ i1 < · · · < ip = m and 1 = jp < jp−1 < · · · < j1. Thus p ≤ m and
ji ≥ p− i+1 for i = 1, . . . , p. As FK is monotonic in each cell [ai, ai−1], we obtain

n
∑

i=1

∣

∣FK(Ii)
∣

∣ ≤
m
∑

i=1

∣

∣FK(Ii)
∣

∣ ≤
∣

∣

∣
FK

(

[0, aj1 ]
)

∣

∣

∣
+

p
∑

i=1

∣

∣

∣
FK

(

[aji
, aji−1]

)

∣

∣

∣

≤ aα
j1
+ 2

p
∑

i=1

aα
ji−1 ≤ aα

p + 2

p
∑

i=1

aα
p−i

< 2aα
0 + 2

p
∑

s=1

aα
s = 2b

2α

[

1 +

p
∑

s=1

(

1

2s

)α
]

< 2b2α

(

1 +

m
∑

s=1

s−α

)

< 2b2α
(

2 +

∫ m

1
s−α ds

)

<
2

1− α

(

2 +m1−α
)

|K|2α <
2

1− α

(

2 + 3n1−α
)

|K|2α .
�

Lemma 5. Let K = [a, b] be a cell with |K| < 1/2, and let η < 1/2 be a positive
number. There is a constant κ′ > 0, depending only on η, such that

p
∑

i=1

∣

∣FK(Ai)
∣

∣ < κ′ |K|α
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for each η-regular partition
{

(A1, x1), . . . , (Ap, xp)
}

such that

{x1, . . . , xp} ∩ (a, b) = ∅ and

p
∑

i=1

|Ai| ≤ 2.

Proof: After a suitable reordering, there is an integer q such that 0 ≤ q ≤ p and

d
(

Ai ∪ {xi}
)

{

≥ 1
2 |K| for i = 1, . . . , q,

< 1
2 |K| for i = q + 1, . . . , p.

As the partition
{

(Aq+1, xq+1), . . . , (Ap, xp)
}

is
(

|K|/2
)

-fine, Lemma 3 yields

(9)

p
∑

i=q+1

∣

∣FK(Ai)
∣

∣ < κ|K|α

where κ is a constant depending only on η. By our assumptions,

q
∑

i=1

‖Ai‖ <

q
∑

i=1

|Ai|

ηd
(

Ai ∪ {xi}
) ≤

2

η|K|

q
∑

i=1

|Ai| ≤
4

η|K|
.

It follows the figure
⋃q

i=1Ai is the union of nonoverlapping intervals I1, . . . , In

where n ≤ 2/
(

η|K|). Observe 3α > 2 implies 2α > 1, and use Lemma 4 to obtain

(10)

q
∑

i=1

∣

∣FK(Ai)
∣

∣ ≤
n
∑

i=1

∣

∣FK(Ii)
∣

∣ <
4

1− α
|K|2α +

6

1− α

(

2

η|K|

)1−α

|K|2α

=
2

1− α

[

2|K|α + 3

(

2

η

)1−α

|K|2α−1

]

· |K|α

<
2

1− α

[

2 + 3

(

2

η

)1−α
]

· |K|α.

The lemma follows by adding inequalities (9) and (10). �

Proposition 6. The measure V#F is absolutely continuous.

Proof: It suffices to show V#F (D) = 0 (see the closing argument in the proof
of Lemma 3). To this end, choose positive numbers η < 1/2 and ε < 1. If κ and
κ′ are the constants of Lemmas 3 and 5 corresponding to η, let

β = max{1, κ, κ′}.
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Select a positive integer N and δ > 0 so that

2β

∞
∑

n=N+1

(

2

3α

)n

< ε and 2δα <
ε

3Nβ
,

and let
{

(A1, x1), . . . , (Ap, xp)
}

be an η-regular δ-fine partition such that xi ∈ D
for i = 1, . . . , p. As each figure Ai is contained in the cell [−δ, 1+ δ] and δ < 1/2,
the condition

∑p
i=1 |Ai| ≤ 2 of Lemma 5 is satisfied. For each integer n ≥ 1, let

Kn be the collection of 2
n−1 cells whose length is 3−n and whose interior is a

connected component of [0, 1]−D. Observe δ < |K|/2 for each cell K ∈ Kn with
n ≤ N . Applying Lemmas 3 and 5, we obtain

p
∑

i=1

∣

∣F (Ai)
∣

∣ ≤
∞
∑

n=1

∑

K∈Kn

p
∑

i=1

∣

∣FK(Ai)
∣

∣

=

N
∑

n=1

∑

K∈Kn

p
∑

i=1

∣

∣FK(Ai)
∣

∣+

∞
∑

n=N+1

∑

K∈Kn

p
∑

i=1

∣

∣FK(Ai)
∣

∣

<
N
∑

n=1

∑

K∈Kn

βδα +
∞
∑

n=N+1

∑

K∈Kn

β
(

3−n
)α

= βδα
N
∑

n=1

2n−1 + β

∞
∑

n=N+1

2n−13−nα

< βδα2N + β

∞
∑

n=N+1

(

2

3α

)n

< βδα3N +
ε

2
< ε.

From the arbitrariness of ε and η, it is easy to infer V#F (D) = 0. �

A function G defined on R is called Lipschitz at z ∈ R if there are positive
numbers c and η, depending on z, such that

∣

∣G(x) − G(z)
∣

∣ ≤ c|x − z|

for all x ∈ R with |x− z| < η. If H is a function defined on R and K is a cell, we
denote by V H(K) the classical variation of H in K.

Lemma 7. Let K = [a, b] be a cell with |K| < 1/2, let {zi} be a sequence in
(−∞, a) converging to a, and select positive numbers c and η. Suppose G is a
function defined on R such that for i = 1, 2, . . . ,

∣

∣G(x) − G(zi)
∣

∣ ≤ c|x − zi|
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whenever |x − zi| < η. If H = FK − G, then V H(K) =∞.

Proof: With no loss of generality, we may assume a = 0. Choose an N > 0, and
select integers s ≥ r > 1/(4η) so that

(4r)1−αb2α−2 ≥ c+ 1 and

s
∑

k=r

b2

4k
> N + 1.

If i ≥ 1 is an integer with 2(s − r + 1)czi > −1 and zi > −η/2, we obtain

V H(K) ≥
s
∑

k=r

∣

∣

∣

∣

H

(

b2

4k

)

− H

(

b2

4k + 2

)∣

∣

∣

∣

=

s
∑

k=r

∣

∣

∣

∣

∣

(

b2

4k

)α

+

(

b2

4k + 2

)α

− G

(

b2

4k

)

+G

(

b2

4k + 2

)

∣

∣

∣

∣

∣

≥
s
∑

k=r

[

(

b2

4k

)α

+

(

b2

4k + 2

)α

−

∣

∣

∣

∣

G

(

b2

4k

)

− G(zi)

∣

∣

∣

∣

−

∣

∣

∣

∣

G(zi)− G

(

b2

4k + 2

)
∣

∣

∣

∣

]

≥
s
∑

k=r

[

(

b2

4k

)α

+

(

b2

4k + 2

)α

−c

∣

∣

∣

∣

b2

4k
− zi

∣

∣

∣

∣

− c

∣

∣

∣

∣

b2

4k + 2
− zi

∣

∣

∣

∣

]

=

s
∑

k=r

(

b2

4k

[

(4k)1−αb2α−2 − c
]

+
b2

4k + 2

[

(4k + 2)1−αb2α−2 − c
]

+ 2czi

)

≥
s
∑

k=r

(

b2

4k
+ 2czi

)

= 2(s − r + 1)czi +

s
∑

k=r

b2

4k
> N.

The lemma follows from the arbitrariness of N . �

Proposition 8. Let G be a function defined on R that is Lipschitz at all but

countably many points of the cell A = [0, 1]. If H = F − G, then V H(A) =∞.

Proof: Since G is Lipschitz at all but countably many points of the Cantor
ternary set D in A, a Baire category argument shows there are an open interval
U with D ∩U 6= ∅, a set C ⊂ D ∩U dense in D ∩U , and positive numbers c and
η such that for each z ∈ C,

∣

∣G(x) − G(z)
∣

∣ ≤ c|x − z|
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whenever |x − z| < η. There is a connected component (a, b) of A − D with
a ∈ D ∩ U . If K = [a, b], Lemma 7 implies

V H(A) ≥ V H(K) = V (FK − G)(K) =∞.
�

Theorem 9. The function F defined by equation (1) is a primitive which is not
the sum of a locally absolutely continuous function and a function that is Lipschitz

at all but countably many points.

Proof: Since V∗F ≤ V#F , Propositions 2 and 6 show that F is a primitive. If
G is a function defined on R that is Lipschitz at all but countably many points,
then F − G is not locally absolutely continuous by Proposition 8. �
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