On Mazurkiewicz sets

MARTA N. CHARATONIK, WŁODZIMIERZ J. CHARATONIK

Abstract. A Mazurkiewicz set M is a subset of a plane with the property that each straight line intersects M in exactly two points. We modify the original construction to obtain a Mazurkiewicz set which does not contain vertices of an equilateral triangle or a square. This answers some questions by L.D. Loveland and S.M. Loveland. We also use similar methods to construct a bounded noncompact, nonconnected generalized Mazurkiewicz set.

Keywords: Mazurkiewicz set, GM-set, double midset property Classification: Primary 54C99, 54F15, 54G20; Secondary 54B20

By a Mazurkiewicz set (shortly M-set) we mean a subset X of the plane such that every straight line intersects X in exactly two points. It was constructed in [3] using transfinite induction. The notion was generalized in two directions: to generalized Mazurkiewicz sets (GM-sets) and to sets with the double midset property (DMP-sets). Let us recall that a subset X of the plane is a GM-set if it contains at least two points and each line that separates two points of X intersects X in exactly two points. A subset X of the plane is a DMP-set if it contains at least two points and the perpendicular bisector of every segment joining two points in X intersect X in exactly two points. It follows from the definitions that every M-set is a GM-set and every GM-set is an DMP-set. For more information about these notions see [2]. In the same article the authors ask some questions related to the subject. Here we answer some of them in a more general case constructing, using transfinite induction, an M-set with some additional geometrical properties. Namely, the M-set that does not contain vertices of an equilateral triangle or vertices of a square, and whose image under the inversion with respect to the unit circle is a bounded, noncompact, nonconnected GM-set.

We will need some denotation. The symbol \mathfrak{c} denotes the cardinal number continuum, i.e. the first ordinal number whose cardinality is the cardinality of reals. All the constructions are going to be done in the complex plane \mathbb{C} . Given $x, y \in \mathbb{C}$ the symbol l(x, y) denotes the line through x and y if $x \neq y$, and $l(x, x) = \{x\}$. If both x and y are distinct from 0, and $x \neq y$, then c(x, y) is the circle that contains x, y and 0. Moreover we put $c(x, x) = \{x\}$. For a subset $A \subset \mathbb{C}$ we put $L(A) = \bigcup \{l(x, y) : x, y \in A\}$ and $C(A) = \bigcup \{c(x, y) : x, y \in A\}$.

We denote by B the open unit disk in the plane, i.e. $B = \{z \in \mathbb{C} : |z| < 1\}.$

Theorem. There is an M-set A satisfying the following conditions:

- (1) A does not contain vertices of an equilateral triangle;
- (2) A does not contain vertices of a right isosceles triangle;
- (3) $A \cap \operatorname{cl} B = \emptyset;$
- (4) any circle that contains 0 and is not contained in cl B intersects A at exactly two points.

PROOF: Given two different points $a, b \in \mathbb{C}$ define P(a, b) as the set of all points $x \in \mathbb{C}$ such that the triangle with vertices a, b, x is an equilateral one or a right isosceles one. Thus P(a, b) has exactly eight points. In particular we have $P(0, 1) = \{i, -i, 1+i, 1-i, \frac{1}{2} + \frac{\sqrt{2}}{2}i, \frac{1}{2} + \frac{-\sqrt{2}}{2}i, \frac{1}{2} + \frac{\sqrt{3}}{2}i, \frac{1}{2} + \frac{-\sqrt{3}}{2}i\}$. Additionally we put $P(x, x) = \emptyset$. For a set $A \subset \mathbb{C}$ let $P(A) = \bigcup \{P(x, y) : x, y \in A\}$.

Let $\{l_{\alpha} : \alpha \leq \mathfrak{c}\}$ be the set of all straight lines in the plane, and let $\{c_{\alpha} : \alpha \leq \mathfrak{c}\}$ be the set of all circles passing through 0 and not contained in cl *B*. We will define, for $\alpha < \mathfrak{c}$, the set A_{α} , and $A = \bigcup \{A_{\alpha} : \alpha < \mathfrak{c}\}$ will be the required M-set. Assume that, for some $\alpha < \mathfrak{c}$, the sets A_{β} for $\beta < \alpha$, have been defined satisfying the following conditions:

- $(1_{\beta}) \operatorname{card}(A_{\beta}) < \mathfrak{c};$
- (2_{β}) for every $\gamma < \beta$ we have $A_{\gamma} \subset A_{\beta}$;
- (3_{β}) $A_{\beta} \cap l_{\beta}$ is a two point set;
- $(4_{\beta}) A_{\beta} \cap c_{\beta}$ is a two point set;
- $(5_{\beta}) A_{\beta} \cap P(A_{\beta}) = \emptyset;$
- (6_{β}) A_{β} contains no three collinear points;
- (7_{β}) there is no circle in the plane that contains three different points of A_{β} and the point 0;
- $(8_{\beta}) A_{\beta} \cap \operatorname{cl} B = \emptyset.$

Put $N_{\alpha} = \bigcup \{A_{\beta} : \beta < \alpha\}$. Then

- $\operatorname{card}(P(N_{\alpha})) < \mathfrak{c},$
- card $(l_{\alpha} \cap (\bigcup \{l(x, y) : x, y \in N_{\alpha}\})) < \mathfrak{c},$
- card $(c_{\alpha} \cap (\bigcup \{c(x,y) : x, y \in N_{\alpha}\})) < \mathfrak{c},$
- $\operatorname{card}(l_{\alpha} \cap N_{\alpha}) \leq 2$,
- $\operatorname{card}(c_{\alpha} \cap N_{\alpha}) \leq 2.$

Thus we can choose points x_{α} , y_{α} , z_{α} , t_{α} that satisfy the following conditions, where $G_{\alpha} = \operatorname{cl} B \cup P(N_{\alpha}) \cup L(N_{\alpha}) \cup C(N_{\alpha})$.

- $x_{\alpha}, y_{\alpha} \in l_{\alpha} \setminus c_{\alpha},$
- $z_{\alpha}, t_{\alpha} \in c_{\alpha} \setminus l_{\alpha},$
- if $\operatorname{card}(l_{\alpha} \cap N_{\alpha}) = 2$, then $\{x_{\alpha}, y_{\alpha}\} = l_{\alpha} \cap N_{\alpha}$,
- if $\operatorname{card}(c_{\alpha} \cap N_{\alpha}) = 2$, then $\{z_{\alpha}, t_{\alpha}\} = c_{\alpha} \cap N_{\alpha}$,
- if $\operatorname{card}(l_{\alpha} \cap N_{\alpha}) = 1$, then $\{x_{\alpha}\} = l_{\alpha} \cap N_{\alpha}$ and $y_{\alpha} \notin G_{\alpha}$,
- if $\operatorname{card}(c_{\alpha} \cap N_{\alpha}) = 1$, then $\{z_{\alpha}\} = c_{\alpha} \cap N_{\alpha}$ and $t_{\alpha} \notin G_{\alpha}$,
- if $\operatorname{card}(l_{\alpha} \cap N_{\alpha}) = 0$, then $x_{\alpha}, y_{\alpha} \notin G_{\alpha}$,
- if $\operatorname{card}(c_{\alpha} \cap N_{\alpha}) = 0$, then $z_{\alpha}, t_{\alpha} \notin G_{\alpha}$.

Finally put $A_{\alpha} = N_{\alpha} \cup \{x_{\alpha}, y_{\alpha}, z_{\alpha}, t_{\alpha}\}$. One can verify that, by the construction, conditions (1_{α}) – (8_{α}) are satisfied. Putting $A = \bigcup \{A_{\alpha} : \alpha < \mathfrak{c}\}$ we see that A is the required M-set. This finishes the proof.

Remark 1. In [2, Questions 2 and 3, p. 488] the authors asked if there is a DMP-set in the plane that does not contain vertices of a square (Question 2) and if there is a DMP-set in the plane that does not contain vertices of an equilateral triangle (Question 3). Because every M-set is a DMP-set, the Theorem answers both questions.

Denote by $h : \mathbb{C} \setminus \{0\} \to \mathbb{C} \setminus \{0\}$ the inversion with respect to the unit circle, i.e. $h(z) = 1/\overline{z}$. Observe that h(h(z)) = z.

Proposition. Let A be an M-set that satisfies conditions (3) and (4) of the Theorem. Then h(A) is a GM-set.

PROOF: First observe that $h(A) \subset B$ by condition (3). Let l be a line that separates two points of h(A). If $0 \in l$, then $h(l \setminus \{0\}) = l \setminus \{0\}$. If $0 \notin l$, then h(l) is a circle passing through 0 and not contained in B. In any case $h(l) \cap A$ is a two point set by (4), and therefore $h(h(l)) \cap h(A) = l \cap h(A)$ is a two point set, as required.

Remark 2. In [2, Question 6, p. 490] the authors ask the following question. Is there a bounded GM-set which is not a simple closed curve? Is a bounded GMset necessarily closed? Connected? Since the constructed set h(A) is a bounded GM-set homeomorphic to an M-set, it is neither closed (M-sets are not bounded, so not compact) nor connected (M-sets are zerodimensional, see [1, Theorem 2, p. 553]). Thus the Proposition answers in the negative all of the three questions. It also answers more particular Question 7 and partially Question 8.

Acknowledgment. The authors would like to thank Janusz J. Charatonik for his help in the preparation of this paper.

References

- Kulesza J., A two-point set must be zerodimensional, Proc. Amer. Math. Soc. 116 (1992), 551–553.
- [2] Loveland L.D., Loveland S.M., Planar sets that line hits twice, Houston J. Math. 23 (1997), 485–497.
- [3] Mazurkiewicz S., Sur un ensemble plan qui a avec chaque droite deux et seulement deux points communs, C.R. Soc. de Varsovie 7 (1914), 382–383.

W.J. Charatonik:

MATHEMATICAL INSTITUTE, UNIVERSITY OF WROCŁAW, PL. GRUNWALDZKI 2/4,

50-384 Wrocław, Poland

and

Department of Mathematics and Statistics, University of Missouri-Rolla, Rolla, MO 65409, USA

E-mail: wjcharat@math.uni.wroc.pl wjcharat@umr.edu

(Received January 10, 2000)