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Generalized tri-quotient maps and Čech-completeness

Themba Dube, Vesko Valov

Abstract. For a topological space X let K(X) be the set of all compact subsets of X.

The purpose of this paper is to characterize Lindelöf Čech-complete spaces X by means
of the sets K(X). Similar characterizations also hold for Lindelöf locally compact X, as
well as for countably K-determined spaces X. Our results extend a classical result of
J. Christensen.
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1. Introduction

J.P. Christensen [2] proved the following characterization of Polish spaces which
is of great importance in analytic set theory (see [10] for another proof of the same
result).

Theorem 1.1. For a separable metric space Y the following are equivalent:

(a) Y is complete.
(b) There is a Polish space X and a map F : K(X)→ K(Y ) such that:

(i) if A, B ∈ K(X) with A ⊂ B, then F (A) ⊂ F (B) (i.e., F is mono-
tone);

(ii) for each K ∈ K(Y ) there is H ∈ K(X) with K ⊂ F (H) (i.e.,
F (K(X)) is cofinal in K(Y )).

(c) The space K(Y ) endowed with the Vietoris topology is the continuous
image of a Polish space.

Recently A. Bouziad and J. Calbrix [1] generalized the equivalence (a) ⇔ (c)
of Theorem 1.1 as follows.

Theorem 1.2. A regular q-space Y is Lindelöf and Čech-complete if and only if
there exists a continuous map f from a Lindelöf Čech-complete space X into the
space K(Y ) endowed with the upper Vietoris topology such that f(X) is cofinal
in K(Y ).

Recall that X is a q-space ([6]) if every x ∈ X has a sequence {Un} of neighbor-
hoods such that if xn ∈ Un for each n ∈ N, then {xn} has a cluster point in X .
Obviously, every first countable, in particular, every metric space is a q-space.
The importance (and the beauty) of J. Christensen’s result is the equivalence

(a) ⇔ (b) because K(X) is considered without any topology and the map F is
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required to satisfy only set-theoretical conditions. The main purpose of this note
is to generalize the equivalence (a)⇔ (b) of Theorem 1.1 in two directions. First,
to show that it is true for more general spaces than separable metric ones. Second,
to show that local compactness can also be characterized in a similar way.
To state our result, we need some preliminary concepts. Call a set A ⊂ X

bounded in X if each locally finite open in X family has a finite restriction on A.
For completely regularX boundedness of A ⊂ X is equivalent to the boundedness
of f(A) for each continuous real-valued function f on X . A space X is said to
be a µ-space or µ-complete if every closed and bounded set in X is compact.
Every paracompact (in particular, Lindelöf), as well as every realcompact space
is µ-complete. Now, we can come to our main result.

Theorem 1.3. For a regular µ-complete q-space Y the following are equivalent,
where P is either local compactness or Čech-completeness:

(a) Y is a Lindelöf space with the property P ;
(b) there exists a Lindelöf space X ∈ P and a monotone map F : K(X) →

K(Y ) such that F (K(X)) is cofinal in K(Y );
(c) there exists a separable metric space M ∈ P and a monotone map F :

K(M)→ K(Y ) such that F (K(M)) is cofinal in K(Y ).

A similar to Theorem 1.3 result also holds for Lindelöf Σ-spaces, see The-
orem 3.3 (recall that Lindelöf Σ-spaces [8], in different terminology, countably
K-determined spaces [4], are the images of separable metric spaces under upper
semi-continuous compact-valued maps). We introduce in Section 2 generalized
tri-quotient maps. The upper semi-continuous compact-valued maps from this
class, like Michael’s tri-quotient maps [7], preserve sieve-completeness (see Theo-
rem 2.4).
All topological spaces are assumed to be Hausdorff.

2. Generalized tri-quotient maps

Suppose F : X → 2Y is a set-valued map. For anyA ⊂ X andB ⊂ Y we denote
F (A) =

⋃

{F (x) : x ∈ A} and F−1(B) = {x ∈ X : F (x) ∩ B 6= ∅}, and the graph
of F is the set G(F ) = {(x, y) : y ∈ F (x)} ⊂ X × Y . Note that, in general, G(F )
is not closed in X ×Y unless F possesses some type of continuity. We also denote
by πX and πY the projections from G(F ) into X and Y respectively. The map
F is upper semi-continuous (br., usc) if F−1(H) ⊂ X is closed for any closed
H ⊂ Y . Upper semi-continuous compact-valued maps are called usco maps. We
also use F(X) to denote the topology of X .
A map F : X → 2Y is said to be generalized tri-quotient if one can assign to

each open U ⊂ X an open t(U) ⊂ Y such that:

(1) t(U) ⊂ F (U);
(2) t(X) = Y ;
(3) U ⊂ V implies t(U) ⊂ t(V );
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(4) if y ∈ t(U) and if W is a cover of F−1(y) ∩ U by open subsets of X , then
y ∈ t(

⋃

E) for some finite E ⊂ W .

We call the function t : T (X) → T (Y ) an assignment for F . By (1) and (2),
every generalized tri-quotient map is surjective, i.e. Y = F (X). When F : X → Y
is single-valued and continuous, the above definition coincides with the definition
of a tri-quotient map ([7]).

Proposition 2.1. F : X → 2Y is generalized tri-quotient if and only if πY :
G(F )→ Y is tri-quotient.

Proof: Suppose F is generalized tri-quotient and t is an assignment for F . For
each open U ⊂ G(F ) let BU be the family of all pairs (W, V ) ∈ T (X) × T (Y )
such that (W × V )∩G(F ) ⊂ U and define t∗(U) =

⋃

{t(W ) ∩ V : (W, V ) ∈ BU}.
Obviously, U1 ⊂ U2 implies t∗(U1) ⊂ t∗(U2). Let check that t∗ satisfies the
conditions (1), (2) and (4) with F replaced by πY and X by G(F ).

(1) If y ∈ t∗(U), then y ∈ t(W )∩V for some (W, V ) ∈ BU . Since t(W ) ⊂ F (W ),
there exists x ∈ W with y ∈ F (x). Hence (x, y) ∈ (W × V ) ∩G(F ), so (x, y) ∈ U

and y = πY ((x, y)) ∈ πY (U).

(2) For a fixed y ∈ Y and any x ∈ F−1(y) take arbitrary W (x) ∈ T (X)
and V (x) ∈ T (Y ) such that x ∈ W (x) and y ∈ V (x). By (4), y ∈ t(

⋃

{W (xi) :
i = 1, 2, . . . , n}) for some finite set {xi : i = 1, 2, . . . , n}. Let W =

⋃

{W (xi) :
i = 1, . . . , n} and V =

⋂

{V (xi) : i = 1, . . . , n}. Then y ∈ t(W ) ∩ V ⊂ t∗(G(F )).

(4) Let y ∈ t∗(U) and W be a cover of π−1
Y
(y) ∩ U by open subsets of G(F ).

We can suppose that W = {Uα = (Wα × Vα) ∩ G(F ) : α ∈ Λ}. There exists
(W, V ) ∈ BU such that y ∈ t(W ) ∩ V . It is easily seen that W ∩ F−1(y) is
covered by {Wα : α ∈ Λ}. By (4), y ∈ t(

⋃

{Wα(i) : i = 1, 2, . . . , k}) for some

finite {α(i) : i = 1, 2, . . . , k} ⊂ Λ. Denote W0 =
⋃

{Wα(i) : i = 1, 2, . . . , k} and

V0 =
⋂

{Vα(i) : i = 1, 2, . . . , k}. Then we have y ∈ t(W0) ∩ V0 ⊂ t∗(
⋃

{Uα(i) : i =

1, 2, . . . , k}).
Now suppose πY is tri-quotient with an assignment t∗ : T (G(F )) → T (Y ).

Then t : T (X) → T (Y ), t(U) = t∗(π−1
X
(U)), satisfies conditions (1)–(4). Hence

F is generalized tri-quotient. �

We say that a map F : X → 2Y is contained in a map Φ : X → 2Y if
F (x) ⊂ Φ(x) for every x ∈ X .

Corollary 2.2. Let P be a topological property which is invariant under tri-
quotient maps and perfect preimages. If X ∈ P and F : X → 2Y is a generalized
tri-quotient map which is contained in an usco map Φ, then Y ∈ P .

Proof: First, let us show that Φ is generalized tri-quotient with the same assign-
ment as F . Conditions (1)–(3) are obviously satisfied. Since F (x) ⊂ Φ(x) for all
x ∈ X , we have F−1(y) ⊂ Φ−1(y) for all y ∈ Y . This implies that condition (4)
also holds. Therefore Φ is generalized tri-quotient.
Since Φ is usco, πX : G(Φ)→ X is perfect, so G(Φ) ∈ P . Finally, because P is

preserved by tri-quotient maps, it follows from Proposition 2.1 that Y ∈ P . �
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We need the following analogue of q-spaces: call X an sq-space ([11]) if every
x ∈ X has a sequence {Un} of neighborhoods such that if xn ∈ Un for each n,
then {xn} has a compact closure in X . The sq-space property is stronger than
q-space property and they are equivalent for regular µ-spaces. We express our
gratitude to the referee who pointed that, for Hausdorff spaces, the notion of
sq-space coincides with Michael’s r-space [5].

We say that F : X → 2Y is an sq-map if every x ∈ X has a sequence {Un} of
neighborhoods such that if xn ∈ Un for each n, then

⋃

{F (xn) : n ∈ N} has a
compact closure in Y . Most frequently we will have the following particular case
of an sq-map: X is an sq-space and F : X → 2Y is a map such that F (K) has
a compact closure in Y for every (separable) compact set K ⊂ X . Next lemma
was proved for that particular case in [12, Lemma 3.5]. The same proof adapted
in our situation works. For reader’s convenience it is included here.

Lemma 2.3. Let F : X → 2Y be an sq-map with Y a regular µ-space. Then
there exists an usco map Φ : X → K(Y ) such that F (x) ⊂ Φ(x) for every x ∈ X .

Proof: For each x ∈ X fix a countable decreasing family γ(x) = {Un(x)} of
neighborhoods of x in X such that for any sequence {xn} with xn ∈ Un(x) the
set

⋃

{F (xn) : n ∈ N} has a compact closure in Y . Let

Φ(x) =
⋂

{clY (F (Un(x))) : n ∈ N}, x ∈ X.

Claim 1. Φ(x) is compact for each x ∈ X.

Because each closed and bounded subset of Y is compact, it suffices to show
that Φ(x) is bounded. Assuming the contrary we can find an open locally finite
family γ in Y such that γ ∩ Φ(x) is infinite. We can suppose that γ = {Wn}
is countable. For each n choose xn ∈ Un(x) and yn ∈ F (xn) ∩ Wn. Then
K = clY (

⋃

{F (xn) : n ∈ N}) is compact which contradicts the fact that K

intersects infinitely many elements of γ.

Claim 2. Φ is usc.
Let W ⊂ Y be open and Φ(x0) ⊂ W for some x0 ∈ X . Since Φ(x0) is compact

and Y is regular, there exists an open V ⊂ Y such that Φ(x0) ⊂ clY (V ) ⊂ W .
It is enough to show that there is n with F (x) ⊂ clY (V ) for every x ∈ Un(x0).
Assuming this is not the case we can find xn ∈ Un(x0) such that F (xn) ∩ (Y −
clY (V )) 6= ∅ for each n. Let Hn = clY (

⋃

{F (xk) : k ≥ n}). Because all Hn are
compact, λ = {Hn ∩ (Y − V )} is a decreasing family of non-empty compact sets.
Hence

⋂

λ 6= ∅. But
⋂

λ ⊂
⋂

{Hn} ⊂ Φ(x0) ⊂ V , a contradiction.

Therefore Φ : X → 2Y is an usco map such that F (x) ⊂ Φ(x) for every x ∈ X .
�

Recall that sieve-completeness (see [3], [8]) is a more general property than
Čech-completeness and both they are equivalent for paracompact spaces.
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Theorem 2.4. Let F : X → 2Y be a generalized tri-quotient map such that
Y is a regular µ-space and F (K) has a compact closure in Y for every separable
compactK ⊂ X . If X is regular and sieve-complete, then Y is also sieve-complete.

Proof: Every regular sieve-complete space is sq (even of countable type, see
[3, Proposition 4.4]), so F is an sq-map. Then, by Lemma 2.3, there exists an
usco map Φ : X → K(Y ) containing F . Finally, since sieve-completeness is
preserved by perfect preimages ([8, Remark (8.7))] and by tri-quotient maps ([8,
Theorem 6.3]), Corollary 2.2 yields that Y is sieve-complete. �

Remark 2.5. Actually, the conclusion of Theorem 2.4 remains true if sieve-
completeness is replaced by any topological property P such that P yields sq-
space property, and is preserved by tri-quotient maps and perfect preimages. For
example, local compactness is such a property (it is preserved by bi-quotient maps
[5, Proposition 3.4], and the latter class contains all tri-quotient maps).

It is interesting to compare Theorem 2.4 with Michael’s result [8, Theorem 6.3]
that sieve-completeness is preserved by tri-quotient maps. Concerning the map
F our requirement is weaker, first F is generalized tri-quotient and second it has
a weak type of continuity (that the closure of all F (K), K ∈ K(X) is separable,
are compact). But we require X to be regular and Y to be a regular µ-space.

A map F : X → 2Y is called compact covering (resp., countable compact-
covering) if for every compact (resp., countable compact) set H ⊂ Y there is a
compact set K ⊂ X with H ⊂ F (K). We also say that F is open (resp., closed)
if F (A) ⊂ Y is open (resp., closed) for every open (resp., closed) A ⊂ X .

Proposition 2.6. Let F : X → 2Y be a set-valued map. Then each of the
following implies that F is generalized tri-quotient.

(a) F is open.
(b) F is closed and each F−1(y) is compact.
(c) F is compact-covering (resp., countable compact-covering) with a closed
graph, each F−1(y) is Lindelöf, X is regular and Y is a µ-complete regular
q-space (resp., first countable).

Proof: As in the case of single-valued maps ([8, Theorem 6.5]), we define t(U) =
F (U) for (a) and t(U) = Y − F (X − U) for (b). The routine verification that we
have assignments for F is omitted.

For part (c), since π−1
Y
(y) = F−1(y) × {y}, each π−1

Y
(y) is Lindelöf. Because

F is compact-covering (resp., countable compact-covering) with a closed graph,
πY is also compact-covering (resp., countable compact-covering). Then following
Michael’s arguments from [8, Lemma 5.1 and Theorem 6.5(e)] we can show that
πY is tri-quotient. Therefore, by Proposition 2.1, F is generalized tri-quotient.

�
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3. Main results

Let S(X) ⊂ 2X . We will use τ+
V
to denote the upper Vietoris topology on

S(X) generated by all collections of the form Û = {H ∈ S(X) : H ⊂ U}, where
U runs over the open subsets of X . Also, we will use τV for the Vietoris topology
which is generated by the sets

〈U〉 =
{

H ∈ S(X) : H ∩ U 6= ∅, U ∈ U , and H ⊂
⋃

U
}

,

where U runs over the finite subsets of T (X).

3.1. Proof of Theorem 1.3.
(a)⇒(b). This implication is obvious.

(b)⇒(c). Suppose that F : K(X)→ K(Y ) is monotone and F (K(X)) ⊂ K(Y )
is cofinal, where X is Lindelöf and X ∈ P . Since X is paracompact p-space
in sense of Arhangel’skii, there exists a separable metric space M and a perfect
surjective map f : X → M . Then M ∈ P and we define L : K(M) → K(Y )
by L(K) = F (f−1(K)). It is trivially seen that L is monotone and L(K(M)) is
cofinal in K(Y ).

(c)⇒(a). Suppose F : K(M) → K(Y ) is monotone and F (K(M)) ⊂ K(Y ) is
cofinal, where M is a separable metric space with the property P .
First, let show that F , considered as a set-valued map from (K(M), τV ) into Y ,

is an sq-map. Obviously M is an sq-space. If H ⊂ (K(M), τV ) is compact, then
H =

⋃

H ⊂ M is compact and contains each K ∈ H. Hence, by monotonicity of
F , F (H) ⊂ F (H). Consequently, F (H) has a compact closure in Y . Therefore F

is an sq-map, and by Lemma 2.3, there exists an usco map Φ : (K(M), τV )→ 2
Y

such that F (K) ⊂ Φ(K) for every K ∈ K(M).
Next step is to verify that Φ satisfies the conditions from Proposition 2.6(c).

Since Φ is usc, it has a closed graph. Because (K(M), τV ) is a separable metric
space each Φ−1(y), y ∈ Y , is Lindelöf. To show that Φ is compact-covering take
compact K ⊂ Y . Then there is H ∈ K(M) with K ⊂ F (H). Hence K ⊂ Φ(H)
(we actually have that {Φ(A) : A ∈ K(M)} is cofinal in K(Y )). So, we can apply
Proposition 2.6(c) to conclude that Φ is generalized tri-quotient.
Finally, let show that Y is Lindelöf and Y ∈ P . Since Φ is compact-covering,

Y =
⋃

{Φ(K) : K ∈ K(M)}. So, Y is an usco image of the Lindelöf space
(K(M), τV ). Consequently, Y is Lindelöf. If P is local compactness, Remark 2.5
and Theorem 2.4 yield that Y is locally compact. If P is Čech-completeness,
we can apply Theorem 2.4 to conclude that Y is sieve-complete, and then [8,
Theorem 3.2] (that a paracompact space is sieve-complete iff it is Čech-complete)
to conclude that Y is Čech-complete. �

Corollary 3.2. Let Y be a regular µ-complete q-space and P be either local
compactness or Čech-completeness. Then the following conditions are equivalent:

(a) Y is a Lindelöf space with the property P ;
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(b) there exists a Lindelöf space X ∈ P and a map f : X → K(Y ) such that
f(X) is cofinal in K(Y ) and each f(K), K ∈ K(X), has a compact closure
in Y ;

(c) there exists a Lindelöf space X ∈ P and a continuous map Φ : X →
(K(Y ), τ+

V
) such that Φ(X) ⊂ K(Y ) is cofinal;

(d) there exists a Lindelöf space Z ∈ P and a compact-covering surjection
(not necessarily continuous) g : Z → Y such that g(K) has a compact
closure in Y for each K ∈ K(Z).

Proof: (a)⇒(b). We simply define X to be (K(Y ), τV ) and f(K) = K, K ∈
K(Y ).

(b)⇒(c). Let f and X be as in (b). Then f is an sq-map and, by Lemma 2.3,

there is an usco map Φ : X → 2Y with f(x) ⊂ Φ(x) for all x ∈ X . Therefore Φ

considered as a map from X into (K(Y ), τ+
V
) is continuous and Φ(X) ⊂ K(Y ) is

cofinal.

(c)⇒(d). If Φ and X satisfy (c), let Z be the graph of Φ and g be the projection
πY .

(d)⇒(a). Suppose Z and g are as in (d). We define F : K(Z) → K(Y )
by F (K) = clY (g(K)). Then F is monotone and since g is compact-covering,
F (K(Z)) is cofinal in K(Y ). Finally, by Theorem 1.3, Y is Lindelöf with the
property P . �

The case of Corollary 3.2 when P is Čech-completeness is comparable with
Theorem 2.1 from [1]. We do not need the maps in (b) and (d) to be continuous
(as in [1, Theorem 2.1]), but we need something more from Y — to be µ-complete.

Theorem 3.3. For a regular µ-complete space Y the following are equivalent:

(a) Y is countably K-determined;
(b) there is a separable metric space M and a monotone map F : K(M) →

K(Y ) such that {F (K) : K ∈ K(M)} covers Y ;
(c) there is a countably K-determined space X and a map F : X → K(Y )
such that F (X) = Y and F (K) has a compact closure in Y for every
K ∈ K(X).

Proof: (a)⇒(b). Suppose Y is countably K-determined. Take a separable

metric space M and an usco map φ : M → 2Y with φ(M) = Y . Then F (K) =
φ(K), K ∈ K(M), satisfies the required conditions.

(b)⇒(c). LetM and F be as in (b). The space (K(M), τV ) is separable metric,
hence countably K-determined. Then F , considered as a map from (K(M), τV )
into K(Y ), and the space (K(M), τV ) have required properties.

(c)⇒(a). Let M be a separable metric space and φ : M → 2X an usco map
with φ(M) = X . Define a map L : K(M)→ K(Y ) by L(K) = clY F (φ(K)). Then
L is monotone and {L(K) : K ∈ K(M)} covers Y . As in the proof of Theorem 1.3
(implication (c)⇒(a)), one can show that L is an sq-map from (K(M), τV ) into 2

Y .
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Then, by Lemma 2.3, there is an usco map Φ : (K(M), τV ) → 2Y such that
L(K) ⊂ Φ(K) for all K ∈ K(M). This implies that Y is an usco image of the
space (K(M), τV ). Therefore Y is countably K-determined. �
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