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Connected Hausdorff subtopologies

JACK PORTER

Abstract. A non-connected, Hausdorff space with a countable network has a connected
Hausdorff-subtopology iff the space is not-H-closed. This result answers two questions
posed by Tkacenko, Tkachuk, Uspenskij, and Wilson [Comment. Math. Univ. Carolinae
37 (1996), 825-841]. A non-H-closed, Hausdorff space with countable m-weight and no
connected, Hausdorff subtopology is provided.
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Introduction

Let X be a space. A topology o on X is a subtopology of 7(X) if 0 C 7(X). The
aim of this paper is to determine when a space has a connected, Hausdorff sub-
topology. Tkac¢enko, Tkachuk, Uspenskij, and Wilson [TTUW] have established
these two results:

(1) A countable infinite Hausdorff space has a connected, Hausdorff subtopo-
logy iff it is not H-closed.

(2) A nonconnected, T3 space with a countable network has a connected, Haus-
dorff subtopology iff it is not compact.

In this paper we extend (1) and (2) and completely answer two of the questions
posed in [TTUW] by proving this result:

Main Theorem. A nonconnected, Hausdorff space with a countable network
has a connected Hausdorff subtopology iff it is not H-closed.

Examples are provided to show that the hypothesis property of countable net-
work in the main theorem cannot be replaced by a countable 7-weight or 2“-
network. Vermeer [V] defined a Hausdorfl space to be absolute Katétov if ev-
ery Hausdorff subtopology has an H-closed subtopology and noted that H-closed
spaces are absolute Katétov. He asked if every absolute Katétov is H-closed. We
show that a countable Hausdorff space is absolute Katétov iff it is H-closed and
provide an example of a non-H-closed space that is absolutely Katétov.

We extend the well-known result that a compact Hausdorff space with a count-
able network is second countable to this result: if X is an H-closed space with
a countable network, then X (s) is second countable. An example of an H-closed
space with a countable network is provided which is not second countable.
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First some basic definitions (see [PW1]) are provided.

A Hausdorff space X is H-closed if whenever Y is a Hausdorff space and X
is a subspace of Y, then X is closed in Y. For a Hausdorfl space X, this is
equivalent to the property that every open ultrafilter on X converges and to the
property that for every open cover C of X, there is a finite subset D C C such
that X = clx(UD). A Hausdorff space X is almost H-closed if there is exactly
one free open ultrafilter on X.

A space X is feebly compact (see 1.11 in [PW1]) if for every countable
open cover C of X, there is a finite subset D C C such that X = clx(UD).
A space is not feebly compact iff there is an infinite locally finite family of pairwise
disjoint nonempty open subsets. A Tychonoff space is feebly compact iff it is
pseudocompact.

Let X be a Hausdorff space and 7(X)(s) be the topology generated by the open
base {intxclx(U) : U € 7}. It is easy to check that 7(X)(s) C 7(X) and that
(X, 7(X)(s)), sometimes denoted as X (s), is also a Hausdorff space. In particular,
7(X(8)) = 7(X)(s). A space X is semiregular if 7(X)(s) = 7(X). The space
X (s) is semiregular.

Let X and Y be two spaces. A function f : X — Y is #—continuous if for
each p € X and open set U € 7(Y) such that f(p) € U, there is an open set
V € 7(X) such that p € V and flclxV] C clyU.

Here are some known results about H-closed spaces and #—continuous functions
that will be useful in the sequel.

Fact 1. Let X and Y be Hausdorff spaces and f : X — Y be a surjection.

(a) If X is H-closed and f is 6—continuous, then Y is also H-closed.

(b) If X is connected and f is —continuous, then Y is also connected.

(¢) The space X is H-closed iff X (s) is H-closed.

(d) If X is H-closed and o is a Hausdorff subtopology, then 7(X(s)) C o C
7(X).

(e) The space X is connected iff X (s) is connected.

Note. An easy consequence of Fact 1 is that an H-closed space has a connected
Hausdorff subtopology iff it is connected.

Let X and Y be sets and f : ¥ — X be a function. For A C Y, define
f#[A] = {x € X : f~(x) C A}. Note that for subsets A, B C Y, f#[Y\A] =
X\f[A] and f#[A N B] = f#[A] N f#[B]. The topology on Y generated by
{f#[U] : U € 7(Y)} is called the #—quotient topology induced by f. The
function f is called irreducible if for each nonempty open set U € 7(Y), there
is some = € X such that f~(z) CU.

Fact 2. Let f : Y — X be onto and compact where Y is a Hausdorff space and
X is a set. Let o be the 6—quotient topology induced by f. Then:

(a) (X, o) is a Hausdorff space,
(b) if X is a space and f is closed, then o C 7(X),
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(c) if f is irreducible, then f is 6—continuous, and
(d) if f is irreducible and Y is semiregular, then X is semiregular.

Application 3. (a) One obtains an easy proof of this result from [TTUW]:
Let Y be a Hausdorff connected extension of a space X. If there is a closed,
discrete subset A of X such that |Y\X| < |Al, then X has a connected, Hausdorff
subtopology.

[If g:Y\X — A is any one-to-one function, it is straightforward to show that
the function f : Y — X defined by f(y) = g(y) for y € Y\X and f(x) = x for
x € X is a perfect irreducible surjection; apply Fact 2.]

(b) Let X be a Hausdorff space with a countable w-base B such that for each
B € B, clB is not feebly compact. By a result in [PW2] we know that X has
a connected Hausdorff extension Y such that Y\X is countable. There is an
infinite closed discrete subset as X is not countably compact. Applying (a), X
has a connected, Hausdorff subtopology.

Let X be a Hausdorff space and let ©X = {{/ : U is an open ultrafilter on X}.
For U € 7(X), let O(U) = {U : U € U}. For U,V € 7(X), it is easy to verify
(see [PW1]) that O(@) = @, O(X) =0X,0UNV)=0U)NOV),0UUV) =
OU)uO(V),eX\OWU) = O(X\clxU), and O(U) = Ol(intxclxU). ©X with
the topology generated by {O(U) : U € 7(X)} is an extremally disconnected
compact Hausdorff space. The subspace EX = {U € ©X : U is fixed} is called
the absolute of X. The function k : EX — X defined by k(i) is the unique
convergent point of U is called a covering function. The subspace EX is dense in
O©X (in particular, EX is an extremally disconnected Tychonoff space and ©X =
BEX), and the covering function k£ : EX — X is irreducible, §—continuous,
perfect and onto.

A family F of subsets of a space X is a network if for each open set U and
p € U, there is an ' € F such that p € FF C U. A space X with a countable
network F has a coarser second countable Hausdorff topology. This is verified
by first letting H = {(F,G) € F? : there are disjoint open sets U,V such that
F CUand G CV}. For (F,G) € H, let Upg, Vig be disjoint open sets such that
F C Upg,G C Vgqg. Note that H is countable and so {Upg, Vrg : (F,G) € H}
generates a second countable topology o on X such that o C 7(X). If p,g € X
are distinct points, there are disjoint open sets U,V € 7(X) such that p € U and
q € V. So, there are ;G € F such that p € F C U and ¢ € G C V. Now,
Urq,Vrqg are disjoint open sets containing p, ¢ respectively.

Thus, the o is the desired coarser second countable Hausdorff topology.

A key lemma from [TTUW] is needed before we can start the proof of the main
result.

Lemma 4 ([TTUW]). A noncompact, separable metrizable space has a separable
metrizable subtopology which is nowhere locally compact.
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Proof of the Main Theorem. Suppose X is not H-closed and has a countable
network for X. As X is Lindel6f and not H-closed, it follows that X is not feebly
compact. Thus, there is a locally finite family {U, : n € w} of pairwise disjoint
nonempty open subsets of X. It is easy to verify that {O(Uy,) : n € w} is a locally
finite family of pairwise disjoint nonempty clopen subsets of £EX. So, EX is not
feebly compact. As FX is Tychonoff, it follows that FX is not pseudocompact
and there is a continuous unbounded real-valued function fy on EX. There is
a countable family {V;, : n € N} of open subsets of X with the property that if
p,q € X and p # g, there is some n € N such that p € V;, and q & clxV,,. Now,
EXNO(V,,) is a clopen subset of EX; let fy, be the continuous real-valued function
on EX such that fr,[EXNO(V,)] = {0} and fn[EX\O(Vy,)] = {1}. In particular,
for p,q € X and p # ¢, there is some n € N such that f,[k(p)] = {0} and
fnlk~(q)] = {1}. The diagonal function f : EX — [], R defined by f(y)(n) =
fn(y) for n € w is continuous (not necessarily one-to-one), f[EX] is not compact
as fo is unbounded, and f[k(p)] N f[k(¢)] = @ for distinct points p,q € X.
By Lemma 4, the space f[EX] has a separable metrizable subtopology p which
is nowhere locally compact. By Application 3(b), (f[EX], ) has a connected,
Hausdorff subtopology o. Since f[k(p)] N f[k~(¢)] = @ for distinct points
p,q € X, it follows there is function ¢ : f[EX] — X such that go f =k, i.e., the
following diagram commutes.

EX EX
b
(f[Xp) —— X
de[X]l ’ idx
(f[X],0) —/— X
idf[X]l ’ lidx
(f[X],0) —— (X,p)

Note that f : EX — (f[X],0) is continuous and for p € X, ¢ (p) = f[k~ (p)]-
Thus, ¢ : (f[X],0) — X is a compact function. Clearly, g is onto. If A is a
closed subset of (f[X], o), then g[A] = k[f[A]] is closed in X. So, g is a closed
function. If @ # U € o, then there is a point p € X such that £~ (p) C f[U].
So, g~ (p) = fl[k(p)] C fIf[U]] = U. This shows that g : (f[X],0) — X is
irreducible.

Let p be the 8—quotient topology on X induced by ¢ : (f[X],0) — X. By
Fact 2, (X, p) is a Hausdorff space, p C 7(X), and ¢ : (f[X],0) — (X,p) is
f—continuous. By Fact 1, (X, p) is connected. 0
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By using the fact that a countable H-closed space has a dense subset of isolated
points [PW1], an easy consequence of the above theorem is the following known
result which motivated the problem of this manuscript.

Corollary ([TTUW]). A countable Hausdorff space has a connected, Hausdorff
subtopology iff it is not H-closed.

Notation ([PW1]). Let X be a space and F, G be filter bases on X. The notation
F < G means for each F' € F, thereis a G € G such that G C F, and F = G
means F < Gand G < F.

Recall [PV] that a Hausdorff space is Katétov if it has an H-closed subtopology.

Corollary. A countable Hausdorff space which is not H-closed has a Hausdorff
subtopology which is not Katétov.

PROOF: A countable Hausdorff space which is not H-closed has a connected,
Hausdorff subtopology and this subtopology has no isolated points. In particular,
this subtopology is not Katétov as a countable H-closed space has a dense set of
isolated points. ([l

Fact 7. Let X be an almost H-closed space with three pairwise disjoint clopen
sets. Let o be a Hausdorff subtopology of X. Then (X, o) is not connected and
either 7(X)(s) C o or (X, o) is H-closed.

PROOF: Let o be Hausdorff subtopology of X. If 7(X(s)) C o, then (X, o) is not
connected as X (s) is not connected by Fact 1(e). Suppose 7(X)(s) € 0. Let U
be the free open ultrafilter on X. For each ¢ € X, Fy = {U € 7(X)(s) : ¢ € U}
and Gg = {U € o : ¢ € U} are open filter bases on X. There is some r € X
such that F, £ G, and there is some V € F,. such that U\V # & for all U € G,.
There is some W € F, such that W = intxclxW C V. It follows that V =
{U\clxW : U € G,} is a free open filterbase on X. Thus, V CUY and G, CU. If
Fs £ Gg, then a similar argument shows that G C Y. That is, G, meets Gs. As
(X, 0) is Hausdorff, G, = Gs. Assume that (X, o) is not H-closed. Then there is
a free open filter W on (X, o). So, W is a free open filter base on X and W C U.
So, G, meets W, a contradiction. Thus, (X, o) is H-closed. Of the three pairwise
disjoint clopen sets, at least two do not meet U. So, there is a clopen set C' such
that r ¢ C ¢ U. As G, C FrUU, r ¢ clsC. So, C is closed in (X,0). As
C e 7(X)(s) and Fs C G for all s € X\{r}, it follows that C' € 0. Hence, (X, 0)
is not connected. (]

Example. (1) One question is whether the main result is true when the “count-
able network” part of the hypothesis is replaced by “countable m-weight”. The
Sorgenfrey Line is the usual example of a space with countable 7w-weight but no
countable network. However, the Sorgenfrey Line has a connected Tychonoff sub-
topology (i.e., the real line is a subtopology). Now, Sw\{p} where p € fw\w is
almost H-closed and 0-dimensional. By Fact 7, Sw\{p} has no connected Haus-
dorff subtopology. Also, Sw\{p} has weight 2 and hence a 2“-network. So,
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the Main Theorem cannot be improved by replacing the hypothesis of “countable
network” by “2“-network”.

(2) Another question is whether the main result is true when the hypothesis of
“countable network” is replaced by “cardinality < 2“”. Here is a counterexample:
By repeating the proof of 3.5 in [PW2], there is an almost H-closed extension X
of w such that |X| = ¢. By Fact 7, X does not have a connected Hausdorff
subtopology.

Comment. Vermeer [V] noted that H-closed spaces are absolute Katétov and
asked if there were absolute Katétov spaces which were not H-closed. Vermeer’s
question is re-inforced by the Corollary that the only countable spaces which are
absolute Katétov are the H-closed spaces. However, Fact 7 shows that any almost
H-closed space is also absolute Katétov.

H-closed plus countable network

Note. A space with a countable network is separable and Lindel6f and has the
property that every discrete subspace is countable. A compact Hausdorff space
with a countable network is second countable. A natural question is whether an
H-closed space with a countable network is second countable. The answer is yes
if the space is also semiregular (i.e., minimal Hausdorff) but an example (after
the following Fact) shows that an H-closed space with a countable network may
not have a countable m-base.

Fact 8. If X is an H-closed space with a countable network, then X (s) is second
countable.

PrOOF: Let C = {C, : n € w} be a countable network for X. Let C? =
{(Cy,,Cy) : there are regular open sets Upm, and Vi, such that Cp C Upp,
Cm € Vpm, and Upm N Vam = @}. For each pair (Cp,Cp) € C2, we se-
lect exactly one pair (Upm, Vam). Let o be the topology on X generated by
{Unm, Vam : (Cn,Cm) € C?}, and note that (X, o) is a Hausdorff space with a
countable base and o C 7(X). As X is H-closed, 7(X)(s) C . However, since
7(X)(s) is generated by the collection of all regular open sets, it follows that
o C 7(X)(s). That is, o0 = 7(X)(s). O

Example. Let X = [0,1]2, Y = X\([0,1] x {0}), o the usual topology on X, and
S = {S C Y% : there is a bijection f : w — S converging to (0,0)}. Note that
S is closed under finite unions. Let 7(X) denote the topology on X generated
by o U{X\S : S € §}. Note that 7(X)(s) = 0. So, X is H-closed. Let B be
a countable base for (X, o). Then B U {[0, %) x {0} : n € w\{0}} is a countable
network for X. Also, X is not first countable at (0,0). In fact, there is no
countable 7-base at (0, 0). O
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