
Comment.Math.Univ.Carolin. 42,1 (2001)195–201 195

Connected Hausdorff subtopologies

Jack Porter

Abstract. A non-connected, Hausdorff space with a countable network has a connected
Hausdorff-subtopology iff the space is not-H-closed. This result answers two questions

posed by Tkačenko, Tkachuk, Uspenskij, and Wilson [Comment. Math. Univ. Carolinae
37 (1996), 825–841]. A non-H-closed, Hausdorff space with countable π-weight and no
connected, Hausdorff subtopology is provided.
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Introduction

Let X be a space. A topology σ onX is a subtopology of τ(X) if σ ⊆ τ(X). The
aim of this paper is to determine when a space has a connected, Hausdorff sub-
topology. Tkačenko, Tkachuk, Uspenskij, and Wilson [TTUW] have established
these two results:

(1) A countable infinite Hausdorff space has a connected, Hausdorff subtopo-
logy iff it is not H-closed.

(2) A nonconnected, T3 space with a countable network has a connected, Haus-
dorff subtopology iff it is not compact.

In this paper we extend (1) and (2) and completely answer two of the questions
posed in [TTUW] by proving this result:

Main Theorem. A nonconnected, Hausdorff space with a countable network

has a connected Hausdorff subtopology iff it is not H-closed.

Examples are provided to show that the hypothesis property of countable net-
work in the main theorem cannot be replaced by a countable π-weight or 2ω-
network. Vermeer [V] defined a Hausdorff space to be absolute Katětov if ev-
ery Hausdorff subtopology has an H-closed subtopology and noted that H-closed
spaces are absolute Katětov. He asked if every absolute Katětov is H-closed. We
show that a countable Hausdorff space is absolute Katětov iff it is H-closed and
provide an example of a non-H-closed space that is absolutely Katětov.
We extend the well-known result that a compact Hausdorff space with a count-

able network is second countable to this result: if X is an H-closed space with
a countable network, then X(s) is second countable. An example of an H-closed
space with a countable network is provided which is not second countable.
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First some basic definitions (see [PW1]) are provided.

A Hausdorff space X is H-closed if whenever Y is a Hausdorff space and X
is a subspace of Y , then X is closed in Y . For a Hausdorff space X , this is
equivalent to the property that every open ultrafilter on X converges and to the
property that for every open cover C of X , there is a finite subset D ⊆ C such
that X = clX(∪D). A Hausdorff space X is almost H-closed if there is exactly
one free open ultrafilter on X .

A space X is feebly compact (see 1.11 in [PW1]) if for every countable
open cover C of X , there is a finite subset D ⊆ C such that X = clX(∪D).
A space is not feebly compact iff there is an infinite locally finite family of pairwise
disjoint nonempty open subsets. A Tychonoff space is feebly compact iff it is
pseudocompact.

Let X be a Hausdorff space and τ(X)(s) be the topology generated by the open
base {intXclX(U) : U ∈ τ}. It is easy to check that τ(X)(s) ⊆ τ(X) and that
(X, τ(X)(s)), sometimes denoted asX(s), is also a Hausdorff space. In particular,
τ(X(s)) = τ(X)(s). A space X is semiregular if τ(X)(s) = τ(X). The space
X(s) is semiregular.
Let X and Y be two spaces. A function f : X → Y is θ−continuous if for

each p ∈ X and open set U ∈ τ(Y ) such that f(p) ∈ U , there is an open set
V ∈ τ(X) such that p ∈ V and f [clXV ] ⊆ clY U .
Here are some known results about H-closed spaces and θ−continuous functions

that will be useful in the sequel.

Fact 1. Let X and Y be Hausdorff spaces and f : X → Y be a surjection.

(a) If X is H-closed and f is θ−continuous, then Y is also H-closed.
(b) If X is connected and f is θ−continuous, then Y is also connected.
(c) The space X is H-closed iff X(s) is H-closed.
(d) If X is H-closed and σ is a Hausdorff subtopology, then τ(X(s)) ⊆ σ ⊆

τ(X).
(e) The space X is connected iff X(s) is connected.

Note. An easy consequence of Fact 1 is that an H-closed space has a connected
Hausdorff subtopology iff it is connected.

Let X and Y be sets and f : Y → X be a function. For A ⊆ Y , define
f#[A] = {x ∈ X : f←(x) ⊆ A}. Note that for subsets A, B ⊆ Y , f#[Y \A] =
X\f [A] and f#[A ∩ B] = f#[A] ∩ f#[B]. The topology on Y generated by
{f#[U ] : U ∈ τ(Y )} is called the θ−quotient topology induced by f . The
function f is called irreducible if for each nonempty open set U ∈ τ(Y ), there
is some x ∈ X such that f←(x) ⊆ U .

Fact 2. Let f : Y → X be onto and compact where Y is a Hausdorff space and
X is a set. Let σ be the θ−quotient topology induced by f . Then:

(a) (X, σ) is a Hausdorff space,
(b) if X is a space and f is closed, then σ ⊆ τ(X),



Connected Hausdorff subtopologies 197

(c) if f is irreducible, then f is θ−continuous, and
(d) if f is irreducible and Y is semiregular, then X is semiregular.

Application 3. (a) One obtains an easy proof of this result from [TTUW]:
Let Y be a Hausdorff connected extension of a space X . If there is a closed,
discrete subset A of X such that |Y \X | ≤ |A|, then X has a connected, Hausdorff
subtopology.

[If g : Y \X → A is any one-to-one function, it is straightforward to show that
the function f : Y → X defined by f(y) = g(y) for y ∈ Y \X and f(x) = x for
x ∈ X is a perfect irreducible surjection; apply Fact 2.]

(b) Let X be a Hausdorff space with a countable π-base B such that for each
B ∈ B, clB is not feebly compact. By a result in [PW2] we know that X has
a connected Hausdorff extension Y such that Y \X is countable. There is an
infinite closed discrete subset as X is not countably compact. Applying (a), X
has a connected, Hausdorff subtopology.

Let X be a Hausdorff space and let ΘX = {U : U is an open ultrafilter on X}.
For U ∈ τ(X), let O(U) = {U : U ∈ U}. For U, V ∈ τ(X), it is easy to verify
(see [PW1]) that O(∅) = ∅, O(X) = ΘX, O(U ∩V ) = O(U)∩O(V ), O(U ∪V ) =
O(U) ∪ O(V ),ΘX\O(U) = O(X\clXU), and O(U) = O(intXclXU). ΘX with
the topology generated by {O(U) : U ∈ τ(X)} is an extremally disconnected
compact Hausdorff space. The subspace EX = {U ∈ ΘX : U is fixed} is called
the absolute of X . The function k : EX → X defined by k(U) is the unique
convergent point of U is called a covering function. The subspace EX is dense in
ΘX (in particular, EX is an extremally disconnected Tychonoff space and ΘX =
βEX), and the covering function k : EX → X is irreducible, θ−continuous,
perfect and onto.

A family F of subsets of a space X is a network if for each open set U and
p ∈ U , there is an F ∈ F such that p ∈ F ⊆ U . A space X with a countable
network F has a coarser second countable Hausdorff topology. This is verified
by first letting H = {(F, G) ∈ F2 : there are disjoint open sets U, V such that
F ⊆ U and G ⊆ V }. For (F, G) ∈ H, let UFG, VFG be disjoint open sets such that
F ⊆ UFG, G ⊆ VFG. Note that H is countable and so {UFG, VFG : (F, G) ∈ H}
generates a second countable topology σ on X such that σ ⊆ τ(X). If p, q ∈ X
are distinct points, there are disjoint open sets U, V ∈ τ(X) such that p ∈ U and
q ∈ V . So, there are F, G ∈ F such that p ∈ F ⊆ U and q ∈ G ⊆ V . Now,
UFG, VFG are disjoint open sets containing p, q respectively.
Thus, the σ is the desired coarser second countable Hausdorff topology.

A key lemma from [TTUW] is needed before we can start the proof of the main
result.

Lemma 4 ([TTUW]). A noncompact, separable metrizable space has a separable
metrizable subtopology which is nowhere locally compact.
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Proof of the Main Theorem. Suppose X is not H-closed and has a countable
network for X . As X is Lindelöf and not H-closed, it follows that X is not feebly
compact. Thus, there is a locally finite family {Un : n ∈ ω} of pairwise disjoint
nonempty open subsets of X . It is easy to verify that {O(Un) : n ∈ ω} is a locally
finite family of pairwise disjoint nonempty clopen subsets of EX . So, EX is not
feebly compact. As EX is Tychonoff, it follows that EX is not pseudocompact
and there is a continuous unbounded real-valued function f0 on EX . There is
a countable family {Vn : n ∈ N} of open subsets of X with the property that if
p, q ∈ X and p 6= q, there is some n ∈ N such that p ∈ Vn and q 6∈ clXVn. Now,
EX∩O(Vn) is a clopen subset of EX ; let fn be the continuous real-valued function
on EX such that fn[EX∩O(Vn)] = {0} and fn[EX\O(Vn)] = {1}. In particular,
for p, q ∈ X and p 6= q, there is some n ∈ N such that fn[k

←(p)] = {0} and
fn[k

←(q)] = {1}. The diagonal function f : EX →
∏

ω R defined by f(y)(n) =
fn(y) for n ∈ ω is continuous (not necessarily one-to-one), f [EX ] is not compact
as f0 is unbounded, and f [k←(p)] ∩ f [k←(q)] = ∅ for distinct points p, q ∈ X .
By Lemma 4, the space f [EX ] has a separable metrizable subtopology µ which
is nowhere locally compact. By Application 3(b), (f [EX ], µ) has a connected,
Hausdorff subtopology σ. Since f [k←(p)] ∩ f [k←(q)] = ∅ for distinct points
p, q ∈ X , it follows there is function g : f [EX ]→ X such that g ◦ f = k, i.e., the
following diagram commutes.

EX EX

f





y





y

k

(f [X ], µ)
g

−−−−→ X

idf [X]





y





y

idX

(f [X ], σ)
g

−−−−→ X

idf [X]





y





y

idX

(f [X ], σ)
g

−−−−→ (X, ρ)

◦

◦

◦

Note that f : EX → (f [X ], σ) is continuous and for p ∈ X , g←(p) = f [k←(p)].
Thus, g : (f [X ], σ) → X is a compact function. Clearly, g is onto. If A is a
closed subset of (f [X ], σ), then g[A] = k[f←[A]] is closed in X . So, g is a closed
function. If ∅ 6= U ∈ σ, then there is a point p ∈ X such that k←(p) ⊆ f←[U ].
So, g←(p) = f [k←(p)] ⊆ f [f←[U ]] = U . This shows that g : (f [X ], σ) → X is
irreducible.
Let ρ be the θ−quotient topology on X induced by g : (f [X ], σ) → X . By

Fact 2, (X, ρ) is a Hausdorff space, ρ ⊆ τ(X), and g : (f [X ], σ) → (X, ρ) is
θ−continuous. By Fact 1, (X, ρ) is connected. �
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By using the fact that a countable H-closed space has a dense subset of isolated
points [PW1], an easy consequence of the above theorem is the following known
result which motivated the problem of this manuscript.

Corollary ([TTUW]). A countable Hausdorff space has a connected, Hausdorff
subtopology iff it is not H-closed.

Notation ([PW1]). Let X be a space and F ,G be filter bases onX . The notation
F ≤ G means for each F ∈ F , there is a G ∈ G such that G ⊆ F , and F = G
means F ≤ G and G ≤ F .

Recall [PV] that a Hausdorff space is Katětov if it has an H-closed subtopology.

Corollary. A countable Hausdorff space which is not H-closed has a Hausdorff

subtopology which is not Katětov.

Proof: A countable Hausdorff space which is not H-closed has a connected,
Hausdorff subtopology and this subtopology has no isolated points. In particular,
this subtopology is not Katětov as a countable H-closed space has a dense set of
isolated points. �

Fact 7. Let X be an almost H-closed space with three pairwise disjoint clopen
sets. Let σ be a Hausdorff subtopology of X . Then (X, σ) is not connected and
either τ(X)(s) ⊆ σ or (X, σ) is H-closed.

Proof: Let σ be Hausdorff subtopology of X . If τ(X(s)) ⊆ σ, then (X, σ) is not
connected as X(s) is not connected by Fact 1(e). Suppose τ(X)(s) 6⊆ σ. Let U
be the free open ultrafilter on X . For each q ∈ X , Fq = {U ∈ τ(X)(s) : q ∈ U}
and Gq = {U ∈ σ : q ∈ U} are open filter bases on X . There is some r ∈ X
such that Fr 6≤ Gr and there is some V ∈ Fr such that U\V 6= ∅ for all U ∈ Gr.
There is some W ∈ Fr such that W = intXclXW ⊆ V . It follows that V =
{U\clXW : U ∈ Gr} is a free open filterbase on X . Thus, V ⊆ U and Gr ⊆ U . If
Fs 6≤ Gs, then a similar argument shows that Gs ⊆ U . That is, Gr meets Gs. As
(X, σ) is Hausdorff, Gr = Gs. Assume that (X, σ) is not H-closed. Then there is
a free open filter W on (X, σ). So, W is a free open filter base on X and W ⊆ U .
So, Gr meets W , a contradiction. Thus, (X, σ) is H-closed. Of the three pairwise
disjoint clopen sets, at least two do not meet U . So, there is a clopen set C such
that r /∈ C /∈ U . As Gr ⊆ Fr ∪ U , r /∈ clσC. So, C is closed in (X, σ). As
C ∈ τ(X)(s) and Fs ⊆ Gs for all s ∈ X\{r}, it follows that C ∈ σ. Hence, (X, σ)
is not connected. �

Example. (1) One question is whether the main result is true when the “count-
able network” part of the hypothesis is replaced by “countable π-weight”. The
Sorgenfrey Line is the usual example of a space with countable π-weight but no
countable network. However, the Sorgenfrey Line has a connected Tychonoff sub-
topology (i.e., the real line is a subtopology). Now, βω\{p} where p ∈ βω\ω is
almost H-closed and 0-dimensional. By Fact 7, βω\{p} has no connected Haus-
dorff subtopology. Also, βω\{p} has weight 2ω and hence a 2ω-network. So,
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the Main Theorem cannot be improved by replacing the hypothesis of “countable
network” by “2ω-network”.

(2) Another question is whether the main result is true when the hypothesis of
“countable network” is replaced by “cardinality ≤ 2ω”. Here is a counterexample:
By repeating the proof of 3.5 in [PW2], there is an almost H-closed extension X
of ω such that |X | = c. By Fact 7, X does not have a connected Hausdorff
subtopology.

Comment. Vermeer [V] noted that H-closed spaces are absolute Katětov and
asked if there were absolute Katětov spaces which were not H-closed. Vermeer’s
question is re-inforced by the Corollary that the only countable spaces which are
absolute Katětov are the H-closed spaces. However, Fact 7 shows that any almost
H-closed space is also absolute Katětov.

H-closed plus countable network

Note. A space with a countable network is separable and Lindelöf and has the
property that every discrete subspace is countable. A compact Hausdorff space
with a countable network is second countable. A natural question is whether an
H-closed space with a countable network is second countable. The answer is yes
if the space is also semiregular (i.e., minimal Hausdorff) but an example (after
the following Fact) shows that an H-closed space with a countable network may
not have a countable π-base.

Fact 8. If X is an H-closed space with a countable network, then X(s) is second
countable.

Proof: Let C = {Cn : n ∈ ω} be a countable network for X . Let C2 =
{〈Cn, Cm〉 : there are regular open sets Unm and Vnm such that Cn ⊆ Unm,
Cm ⊆ Vnm, and Unm ∩ Vnm = ∅}. For each pair 〈Cn, Cm〉 ∈ C2, we se-
lect exactly one pair 〈Unm, Vnm〉. Let σ be the topology on X generated by
{Unm, Vnm : 〈Cn, Cm〉 ∈ C2}, and note that (X, σ) is a Hausdorff space with a
countable base and σ ⊆ τ(X). As X is H-closed, τ(X)(s) ⊆ σ. However, since
τ(X)(s) is generated by the collection of all regular open sets, it follows that
σ ⊆ τ(X)(s). That is, σ = τ(X)(s). �

Example. Let X = [0, 1]2, Y = X\([0, 1]×{0}), σ the usual topology on X , and
S = {S ⊂ Y ω : there is a bijection f : ω → S converging to (0, 0)}. Note that
S is closed under finite unions. Let τ(X) denote the topology on X generated
by σ ∪ {X\S : S ∈ S}. Note that τ(X)(s) = σ. So, X is H-closed. Let B be

a countable base for (X, σ). Then B ∪ {[0, 1n ) × {0} : n ∈ ω\{0}} is a countable
network for X . Also, X is not first countable at (0, 0). In fact, there is no
countable π-base at (0, 0). �
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