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Remark on regularity of weak solutions
to the Navier-Stokes equations

ZDENEK SKALAK, PETR KUCERA

Abstract. Some results on regularity of weak solutions to the Navier-Stokes equations
published recently in [3] follow easily from a classical theorem on compact operators.
Further, weak solutions of the Navier-Stokes equations in the space L2(0, T, W13(£2)3)
are regular.
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Introduction

Let £2 be a bounded domain in R?® with C2-boundary 842, let T > 0 and
Qr = 2 % (0,T). We consider the Navier-Stokes initial-boundary value problem
describing the evolution of the velocity u(x,t) and the pressure p(x,t) in Qp:
(1) %—?—VAu—i—u-Vu—i—Vp:f,

(2) V-u=0,

(3) u=20 on 0 x(0,7),

(4) ul=0 = o,

where v > 0 is the viscosity coeflicient and f is the external body force. The initial
data wug should satisfy the compatibility conditions uglg =0 and V - ug = 0.

The definition and the proof of the existence of weak solutions of the equations
(1)—(4) can be found for example in [3] or [6]. In general, it is unknown whether
weak solutions are regular or not. Serrin ([5]) proved that if a weak solution u
of (1)—(4) belongs to L*(0,T, L4(£2)) for 2/a+3/q =1 and ¢ € (3, 00] then w is
regular. Kozono ([3]) generalized this result to a certain class of functions char-
acterized by means of local singularities in the weak-L3 space. He further showed
that there exists an absolute constant £ > 0 such that if u is a weak solution of
(1)-(4) in L0, T, L3(©2)3) and limsup,__q._ [u(d)ll s < lult)ll o) + =
then w is necessarily regular in 2 X (tx — 0, t«+ o) for some o > 0. Let us mention
here that the Kozono’s results were applied in [4] where partial regularity of weak
solutions to the Navier-Stokes equations in the class L>(0, T, L3(§2)) was shown.

The main goal of this paper is to show that the results stated above can be
easily derived from the following well known theorem on compact operators ([2]):
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Theorem A. Let X, Y be Banach spaces. Let S be a one to one continuous
linear operator from X ontoY and K a linear compact operator from X toY. If
Ker(S+ K)=o then (S+ K)(X)=Y.

Let p > 1. LP(f2) is the Lebesgue space with the norm | - [|p. C§°({2) denotes
the set of all infinitely differentiable vector-functions defined in {2, with a compact
support in £2. CF< (£2) is a subset of C§°(§2) which contains only the divergence-
free vector functions. H is the closure of CG7(£2) in L?(£2)3 with the scalar
product (-,-) and the norm || - [|. WP (£2) and Wy"?(£2) (m € N) are the usual

Sobolev spaces. V' denotes the completion of CF%, (£2) in the norm of W01’2(Q)3
. Ou; Ov; i
with the scalar product ((u,v)) = [, 851- 8;)3- dz and the norm | - ||. Py is the

projection operator from L?(£2)% onto H.

L%,(£2) denotes the weak Lebesgue space over 2 with the quasi-norm ||+ || ., de-
fined by ||¢||p.w = supgrso Ru{® € 2;|p(x,t)| > R}Y/P, where p is the Lebesgue
measure. There is another equivalent norm to the above || - [|p.«w (see [3]), so we
may understand L%, (§2) as a Banach space. Let us note that LP(£2) C L%, (£2) and
16llp,w < [|¢]lp for every ¢ € LP(£2).

Let D(A) = {u € V;3f € H;((u,v)) = (f,v) Vv € V}. A is the Stokes op-
erator from D(A) onto H defined for every u € D(A) by the equation ((u,v)) =
(Au,v) Yv € V. D(A) is endowed with the norm |ullp4) = [Aull2 and
D(A) < V. Since 2 € C?, D(A) = W?2(2)3 NV and the norm lullpea
on D(A) is equivalent to the norm induced by W?22(£2)3 (see [6, Lemma 3.7]).
We often use this fact throughout the paper. Let us define the Banach spaces
X = {u € L*0,T,D(A)),us € L*(0,T,H)} and Y = L?(0,T,H) x V with
lullx = llwllp20,7,p(a)) + lwill L2(0,7,7) and |(f; vo)lly = I Fllz2(0,7,8) + lvollv-

Throughout the paper, we suppose that in (1)—-(4) f € L?(0,T, H) and ug € H.
For simplicity, we use the following notation: If F' is a space of real functions then
u € F means that every component of u is from F, e.g. u € W172(.Q) means in
fact that w € W12(£2)3. Similarly, ||u||r means ||u||ps.

Proof of regularity results

At first, we prove two basic propositions. The results mentioned in Introduction
will then be their straightforward consequences.

Proposition 1. Let w € L*(0,T, LY(12)) for 2/a+3/q <1 and q € (3,0]. Then
the operator w —— Py (u - Vw) is compact from X to L?(0,T, H).

ProoF: Firstly, suppose that 2/a + 3/¢g < 1 and «,¢ < co. Using the Hélder
inequality we have for almost every ¢ € (0,7) and every v € H:

| /Q w-Vw - v dz| < |[v]la]ulg| Vewlag g2
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It follows further that

e 2 2 T 2a/(oz 2 (a=2)/a <
lwllZIVwl5g /g2y @t < lullZao 1,000 ( Vewlly, ) ) dr)
0 /(a—2) ( (£2))

2/a a—2)/a af/(a— a—2)/a

)3 0.1 Lage2) / Vw3 Vw5, 25 aq_m_gq)ﬁ /(@=2) gpyla=2)/a <
4/ T 2 (a—2)/cx

||u||La(0TLq(Q ||w||Loo 0,T,W1 2(9))(/ ||vw||(2aq—4q)(aq—2a—2q) dt) <

4/« 2(a—2)/a
||u||La OTLCI(_Q ||w||Loo 0,7,W1 2(_(2 || ||L2 0TW1 (2aq—4q)/(ag—2cc— 2q)( ))

and, therefore,

®) NP (w- Vw)|r20,1,1) <

a—2)/a
Il 0,7, 0 101X 10 s g, o202 (02

where we used the fact that X is embedded continuously into L°(0, T, W12(£2)).
Since (2ag—4q)/(ag—2a—2q) < 6 it follows e.g. from [5, Theorem 2.1, Chapter III]
that the injection of X into L2(0, T, W1-(22q—49)/(aq—2a-29) ((9)} is compact. The
proof now follows immediately from (5) and the definition of compact operators.
Secondly, let w € L%(0,T,L*(£2)), @ > 2. Then | [pu - Vw - v dz| <
lv]l2]|w]|ool|w]ly1,2 for almost every ¢ € (0,7") and every v € H and

e 2 2 T 2a/(a=2) 1.\ (a—2)/a
| Tlalwlfin e de <l o ooy | ol a0

||“||2LQ(O,T,LOO(Q))(/O [[w ||;14//1a2(?3 w3120y )2 <
Y P e ey | T el deya-2/e
el 0.1, 50 2 10 0. 2y 10 s 22
Therefore,
(6)  1Pu(w- V)l 2oz ary < el oor,roo(ap 1wl Tl Stz gy

The injection of X into L2(0,T, W5H2(£2)) is compact and the proof follows im-
mediately from (6) and the definition of compact operators.

If w e L*>(0,T,L%(£2)) and ¢ > 3 then the proof proceeds in the same way as
in the previous paragraphs and we will skip it.
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Finally, let w € L4(0,T, L4(£2)) for 2/a+3/g=1, g € (3,00]. Let M,, = {t €
(0,7); ||u(t)|lg > n},n € N and define u, on (0,T) as:

up(t) =u(t) if t¢ My,
un(t) =0 if teM,.

Obviously, u, € L°°(0,T, LY(£2)) and according to the previous paragraphs the
operators w +—— Ppy(uy, - Vw) are compact from X to L2(0,T, H). Further, the
Lebesgue measure of My, goes to zero for n — oo so that [|u—wun| ra(o,7,04(2)) =

(o, llullg dt)!/® — 0. Therefore, the operator w — Pp(u - Vw) is compact

from X to L2(0,T, H) as a limit of compact operators w — Pg(uy, - Vw) in the
usual norm of the space of all linear bounded operators from X to L2(0,T, H).
O

Let us consider the following Stokes equations with the perturbed convection
term P (u - Vw):

(7 wt + vAw + Py (u - Vw) = f,
(3) w(0) = wp.

Proposition 2. Let 2/a+3/q =1 with q € (3,00]. Then there exists € > 0 with
the following property: if uw = ug + uy in (0,T), u(t) € V for almost every t €
(OvT)v ug € LOO(OvTv L%U(Q))7 uy € LO‘(O,T, Lq(Q)) and supgc7 ”uo(t)H?),w <
e, then for every wo € V and f € L?(0,T, H) there exists a unique solution w of
(7), (8) in X.

PRrROOF: The operator w — (w; + vAw, w(0)) is a one to one continuous linear
operator from X onto Y. It is possible to prove (see also [3, Lemma 2.7]) that
the operator w — Pp(ug - Vaw) is linear and bounded from X to L2(0,T, H)
with the norm less than C'l|uo|| o (0,713 (2))- Since the set of linear bounded one
to one operators is open in the space of all linear bounded operators (using the
usual topology) we get that the operator w — (w; +vAw + P (ug - Vw), w(0))
is a one to one operator from X onto Y for € being sufficiently small. Finally, it
follows from Proposition 1 that the operator w — Py (u1 - Vw) is compact from
X to L%(0,T, H). Moreover, the operator w +—— (w¢ +vAw + Py (u- Vw), w(0))
is one to one from X to Y and the proof follows immediately from Theorem A.
O

Now, we present proofs of the results stated in Introduction. The proofs are
based on Propositions 1 and 2. Theorem 3 is a generalization of the famous
Serrin’s result ([5]) on regularity of weak solutions in the subcritical case and was
proved in [3]. Theorem 4 which is dealing with the partial regularity of weak
solutions in the supercritical case L>°(0,T, L3(£2)) was also proved in [3]. We
present these theorems in a little more general way.
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Theorem 3. There exists a constant ¢ with the following property. If w is a
weak solution of (1)—(4) and there exists a non-negative L?-function M = M (t)
on (0,T) such that
©) sup  Rp{x € 2;|u(x,t)| > R}/3 <e
R>M(t)
for almost every t € (0,T), then w is regular, that is %—’t‘, D¢u € C(2x(0,T))
for every multi-index « with |a| < 2.

PROOF: Due to the condition (9) w can be easily decomposed as u = ug + u1,
where ug € L>(0,T, L3(£2)), uy € L?(0,T, L>=(£2)) and supg;7 ||uo(t)|3,w <
e (see [3]). Let 0 € (0,T) be an arbitrary number. Since the weak solution
u € L?(0,T,V), there exists a tg € (0,0) such that u(ty) € V. If ¢ is sufficiently
small it follows from Proposition 2 that there exists a unique solution w € X of
(7), (8) on (tg,T) with w(tg) = wu(tg). It is easy to show that u = w on (tg,T)
and therefore w € X on (tg, T'). Since o was chosen arbitrarily the theorem follows
immediately using the results on interior regularity of weak solutions proved in [5].

O
Theorem 4. There exists a positive constant € with the following property. If u
is a weak solution of (1)~(4) and there exists w € L3(£2) such that ||u(t)—w||3,4, <
¢ for almost every t € (a,b) C (0,T), then %—’;“,D%u € C(2 x (a,b)) for every
multi-index o with |a| < 2.

PROOF: There exists w; € L*(2) such that |w — w3 < e. If we put ug =
u —wp and w3 = wi, then u = wg + uy on (a,b), ug € L>®(a,b, L3(N2)),
u1 € L™ (a,b, L4(2)) and supg;<yp ||uo(t)||3, < 2. Now, applying again Propo-
sitions 1 and 2 on (a, b) and using the same arguments as in Theorem 3, Theorem 4
follows immediately. O

It was proved in [1] and [3] that if w is a weak solution of (1)-(4) and v €
C([0,T),L3(82)) or w € BV([0,T), L3(£2)) — the set of all functions of bounded
variation on [0,T) with values in L3(£2) — then w is regular. These results are
consequences of Theorem 4.

The following theorem is another example of the use of Theorem A in the
regularity theory of the Navier-Stokes equations. Let us note here that the space
L2(0, T, Wh3(2)) is not imbedded into any L*(0,T, L(£2)) with 2/a + 3/q =1
and ¢ € (3, 00].

Theorem 5. Let u be a weak solution of (1)—(4) and u € L2(O,T, Wl’?’(!?)).
Then %“, Dgu € C(£2 x (0,T)) for every multi-index o with |a| < 2.

PROOF: Firstly, let us show that the operator w — Py (w-Vu) is compact from
X to L?(0,T, H). Using the Hélder inequality we have for almost every ¢ € (0,7)
and every v € H:

| /Q w - Vu v de| < colalwlyao |l
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It follows easily as in the first paragraph of Proposition 1 that
|1 Pr(w - V)|l 20,7,y < cllwlxllullzz0,7,w13(02)) so that w — Py(w - Vu)
is a linear bounded operator from X to L?(0,T, H). As in the last paragraph of
Proposition 1 it is possible to construct w, € L>(0,T, W13(£2)) such that ||u —
U"HL2(0,T,W1,3(Q)) +— 0 and the compactness of the operator w — Py (w-Vu)
follows now from this and from the fact that the operators w — Pp(w - Vuy,)
are compact.

It follows from the standard estimates in Sobolev spaces, the Gronwall lemma
and Theorem A that for every wg € V and f € L?(0,T, H), the following problem
has a unique solution w € X:

(12) wt + vAw + Py (w - Vu) = f,
(13) w(0) = wy.

The proof is concluded using the same arguments as in the proof of Theorem 3.
O

Remark 6. If e.g. f € H (f independent of time) then in Theorem 3 and The-
orem 5, resp. Theorem 4 w is analytic in time, in a neighborhood of the in-
terval (0,7), resp. (a,b), as a D(A)-valued function (see [7]). It follows that
u € C®(0,T,C(2)), resp. u € C*®(a,b,C(f2)). Therefore, u has no singular
points in 2 x (0,T), resp. 2 x (a,b). Also, u(x,-) is an infinitely differentiable
function in (0,7), resp. (a,b), for every € 2.

Remark 7. If 2 € C%! then the information from the Introduction — D(A) =
W?22(2)3NV and the norm |ull peay on D(A) is equivalent to the norm induced

by W22(£2)3 — cannot be used. We do not even know in this case whether
D(A) — Wh2te(2)3 for a positive £ or not. What we only have here is that
D(A) —— V and also X — L*°(0,7,V). As a consequence, Propositions 1
and 2 can be proved only if uw € L2(0,T, L°°(£2)) and the proofs of Theorems 3
and 4 fail totally. On the other hand, it is interesting that Theorem 5 can be
stated and proved without any change.

Remark 8. If (2 is the half-space or R3 (or possibly some other special unbounded
domain) then we are able to obtain almost the same results as in the case of a
bounded domain. Let us discuss it briefly. V' denotes the completion of C§%, ({2) in

the norm of W12(2)? with the scalar product ((u,v))y = fg(g;; gfp’; +uiv;) de.
D(A) is then defined as {u € V;3f € H; ((u,v))y = (f,v) Vv € V} and using
the cut-off method it is possible to show that D(A) < W?22(£2). It implies that
X « L2(0, T, W22(2)) and, consequently, X << L2(0, T, W16=¢(9)) for every
small £ > 0 and every smooth domain @ C (2. As a result, Proposition 1 can be
proved in a similar way as in the case of a bounded domain and Proposition 2
holds with only one change: the weak Lebesgue space Lf’U(Q) is replaced by
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the Lebesgue space L3(£2). In Theorem 3 the condition (9) is replaced by the
assumption w = ug + w1 and ug € L>®(0,T,L3(R)), u; € L*0,T,LI(12)),
supg<i<t ||wo(t)|ls < € and 2/a + 3/q = 1 with ¢ € (3,00]. In Theorem 4, the
space L3(£2) is used instead of the space L3 (£2). Theorem 5 can be stated without
any change.

Conclusion

The results on regularity of weak solutions to the Navier-Stokes equations pre-
sented in this paper have been proved recently in [3]. It is interesting, however,
that an easy proof of these results can be based on a well known classical theorem
on compact operators. Further, weak solutions of the Navier-Stokes equations
in the space L2(0, T, Wb3(£2)3) are regular (Theorem 5), which is interesting in
connection with the famous Prodi-Serrin’s conditions (see [3]).
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