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For a dense set of equivalent norms, a non-reflexive

Banach space contains a triangle with no Chebyshev center

Libor Veselý

Abstract. Let X be a non-reflexive real Banach space. Then for each norm | · | from a
dense set of equivalent norms on X (in the metric of uniform convergence on the unit
ball of X), there exists a three-point set that has no Chebyshev center in (X, | · |). This
result strengthens theorems by Davis and Johnson, van Dulst and Singer, and Konyagin.
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The aim of the present paper is to show that, if X is a non-reflexive real Banach
space, every equivalent norm on X can be arbitrarily approximated by another
equivalent norm | · | such that some three-point set in X has no Chebyshev center
in (X, | · |).
Recall that, roughly speaking, a Chebyshev center of a bounded set is the

center of a minimal ball containing the set (see Definition below). Observe that
Chebyshev centers of a set coincide with those of the convex hull of the set; this
is the reason why we can write shortly “triangle” instead of “three-point set” in
the title.

Our result strengthens the following three theorems (see Corollary).

[DJ] (Davis and Johnson). Every non-reflexive Banach space X admits an
equivalent norm | · | such that (X, | · |) is not isometric to any dual Banach
space. (See [Ve] for a short geometric proof of this result.)

[vDS] (van Dulst and Singer). Every non-reflexive Banach space X admits an
equivalent norm | · | such that (X, | · |) is not norm-one complemented in
its bidual.

[Ko] (Konyagin). Every non-reflexive Banach space X admits an equivalent
norm | · | such that some three-point subset of X has no Chebyshev center
in (X, | · |).

Our construction is very geometrical. While the geometric idea is quite simple,
it could seem less simple when written with all technical details. We encourage,
therefore, the reader to sketch simple pictures while reading the proof.
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We consider only spaces over the reals. For a normed linear space X , let BX

denote its closed unit ball and X∗ its dual Banach space. We start with the
definition of Chebyshev centers and some preparatory facts.

Definition. Let A be a bounded subset of a normed space (X, ‖ ·‖). A point
x0 ∈ X is called a Chebyshev center of A if r(x0) = inf r(X) where r(x) =
supa∈A ‖x − a‖.

Proposition. Let X be a Banach space. If X is norm-one complemented in its
bidual (in particular, if X is a dual space) then every bounded set in X admits
a Chebyshev center. (Cf., e.g., [Ho].)

Remark. Let A be a bounded subset of a normed space X . Suppose that, for
some ̺0 > 0,

⋂

a∈A

(a+ ̺0BX) = ∅ , while
⋂

a∈A

(a+ ̺BX) 6= ∅ ∀̺ > ̺0.

Then A has no Chebyshev center. Indeed, if r is the function from Definition, the
two conditions say that r−1(̺0) = ∅, and r−1(̺) 6= ∅ whenever ̺ > ̺0. Since r is
convex, this implies that inf r(X) = ̺0 and the infimum is not attained.

Observation. Let A, B be two nonempty subsets of a normed space X . For
every f ∈ X∗,

sup f (conv(A ∪ B)) = sup f
(
conv(A ∪ B)

)
= sup f(A ∪ B)

= max
{
sup f(A), sup f(B)

}
.

Lemma. Let A, B be two bounded nonempty sets in a normed space X . Let
f ∈ X∗ be such that sup f(A) < sup f(B). If f attains its supremum over
C = conv(A ∪ B) at some point x ∈ C, then x belongs to conv(B).

Proof: Denote α = sup f(A) and β = sup f(B). By Observation, f(x) =
sup f(C) = β. Since C = conv

[
conv(A) ∪ conv(B)

]
, we can write

x = λnan + (1 − λn)bn + en

where 0 ≤ λn ≤ 1, an ∈ conv(A), bn ∈ conv(B) (for each n) and ‖en‖ → 0 as
n → ∞. Then, for each n,

β = f(x) = λnf(an) + (1− λn)f(bn) + f(en) ≤ λnα+ (1 − λn)β + |f(en)|,

which implies (β−α)λn ≤ |f(en)| → 0. Consequently, λn → 0 and bn → x. Thus
x ∈ conv(B). �

We are ready to state the main result of the present paper.
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Theorem. Let (X, ‖·‖) be a non-reflexive Banach space. Then, for each ε > 0,
X admits an equivalent norm | · |ε such that (1 − ε)‖·‖ ≤ | · |ε ≤ ‖·‖ and some
three-point subset of X has no Chebyshev center in (X, | · |ε).

Proof: Let ε ∈ (0, 1/2) be arbitrary. Fix a functional ϕ ∈ X∗ with ‖ϕ‖ = 1,
and denote Y = ϕ−1(0). Since (obviously) Y is not reflexive, the James theorem
([Ja]) provides a functional f ∈ Y ∗ such that ‖f‖ = 1 and f does not attain its
norm on B(Y,‖·‖). Let F ∈ X∗ be any norm-one extension of f . (Of course, F

may attain its ‖·‖-norm, but if so, the corresponding point cannot lie in Y .)
For simplicity, let us denote

C = B(X,‖·‖), B = B(Y,‖·‖) = C ∩ Y, L = f−1(0) ∩ B.

Claim 1. There exists z0 ∈ X such that

ϕ(z0) > 1, F (z0) < 1 and ‖z0‖ ≤ 1 + ε.

To prove this, fix a point u ∈ X such that F (u) = 0, ‖u‖ ≤ ε and 0 < ϕ(u) < ε;
this is possible since ϕ is not identically zero on F−1(0). Choose z ∈ X such that
‖z‖ < 1 and ϕ(z) > 1 − ϕ(u)/2. Then the point z0 = u + z satisfies our needs.
Indeed, ϕ(z0) = ϕ(u) + ϕ(z) > ϕ(u) + 1 − ϕ(u)/2 > 1, F (z0) = F (z) < 1 (as
‖F‖ = 1) and ‖z0‖ ≤ ‖z‖+ ‖u‖ < 1 + ε. Claim 1 is thus proved.
Fix arbitrarily η ∈ (0, ε). Let y0 ∈ Y be such that f(y0) = 1 + η and ‖y0‖ ≤

1 + 2η. Define

C̃ = conv
[
C ∪ (z0 + εL) ∪ (−z0 + εL) ∪ (y0 + η2B) ∪ (−y0 + η2B)

]
.

Claim 2. If η was taken small enough, the following properties are satisfied:

(1) C ⊂ C̃ ⊂ (1 + 2ε)C;

(2) (z0 + C̃) ∩ (−z0 + C̃) = εL;

(3) f does not attain its supremum on B̃ = C̃ ∩ Y ;

(4) ‖·‖-diam
[
B̃ ∩ f−1

(
[t,+∞)

)]
< ε for some t < sup f(B̃).

Assume for a while that we have already proved Claim 2. Then we can complete

the argument as follows. Let | · | be the norm on X whose unit ball is the set C̃.

(Hence sup f(B̃) = |f |.) Note that, in (4), t < |f | can be taken arbitrarily close

to |f |. Let t ∈ (0, |f |) be so close to |f | that, for s0 :=
|f |
t , we have

(4′) ‖·‖-diam
[
s0B̃ ∩ f−1([|f |,+∞)

)]
= s0 · ‖·‖-diam

[
B̃ ∩ f−1([t,+∞)

)]
< ε.

By (3), (w+B̃)∩f−1(0) = ∅ whenever w ∈ f−1(|f |). Fix any w0 ∈ s0B̃∩f−1(|f |).
Since (4′) implies

‖·‖-diam
[
s0B̃ ∩ f−1(|f |)

]
< ε,
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we have s0B̃ ∩ f−1(|f |) ⊂ w0 + εB. Consequently,

(5)
(w0 + s0B̃) ∩ f−1(0) = w0 +

[
s0B̃ ∩ f−1(−|f |)

]
= w0 −

[
s0B̃ ∩ f−1(|f |)

]

⊂
(
w0 − [w0 + εB]

)
∩ f−1(0) = εB ∩ f−1(0) = εL.

Consider the set A = { z0,−z0, w0 }. Then, for each s > 1,

(z0 + sC̃) ∩ (−z0 + sC̃) ∩ (w0 + sC̃) ⊃ (z0 + C̃) ∩ (−z0 + C̃) ∩ (w0 + sC̃)

by (2)
= εL ∩ (w0 + sC̃) = εL ∩ (w0 + sB̃),

and the last set is nonempty, since, by (5), for s ∈ (1, s0] it contains

(w0 + sB̃) ∩ f−1(0) = w0 +
[
sB̃ ∩ f−1(−|f |)

]
6= ∅

(and it is even larger for s > s0). On the other hand, for s = 1,

(z0 + C̃) ∩ (−z0 + C̃) ∩ (w0 + C̃)
(2)
= εL ∩ (w0 + C̃) ⊂ f−1(0) ∩ (w0 + B̃) = ∅.

By Remark, A has no Chebyshev center in (X, | · |). Moreover, (1) implies
1
1+2ε‖ ·‖ ≤ | · | ≤ ‖ ·‖; this will give the assertion of Theorem since ε was an

arbitrary number from (0, 1/2).
It remains to prove Claim 2, it is, that (1), (2), (3), (4) are satisfied if η ∈ (0, ε)

was taken sufficiently small. To see (1), observe that

±z0 + εL ⊂ (1 + ε)C + εC = (1 + 2ε)C

±y0 + η2B ⊂ (1 + 2η)C + η2C = (1 + η)2C ⊂ (1 + 2ε)C

for all sufficiently small η > 0.

Let us show (2). Observe that ϕ attains its supremum on C̃ (at the points of
z0 + εL). Applying Lemma to the functional ϕ and to the two sets

C ∪ (−z0 + εL) ∪ (y0 + η2B) ∪ (−y0 + η2B) and z0 + εL,

we obtain that ϕ attains its | · |-norm (i.e., its supremum over C̃) exactly at the
points of the set z0 + εL. Moreover, |ϕ| = ϕ(z0). Since

(z0 + C̃) ∩ (−z0 + C̃) ⊂ ϕ−1([0,+∞)
)
∩ ϕ−1((−∞, 0]

)
= ϕ−1(0),

we have

(z0 + C̃) ∩ (−z0 + C̃) =
[
(z0 + C̃) ∩ ϕ−1(0)

]
∩

[
(−z0 + C̃) ∩ ϕ−1(0)

]

=

[
z0 +

(
C̃ ∩ ϕ−1(−|ϕ|)

)]
∩

[
−z0 +

(
C̃ ∩ ϕ−1(|ϕ|)

)]

=
[
z0 + (−z0 + εL)

]
∩

[
−z0 + (z0 + εL)

]
= εL.
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Suppose that (3) does not hold, in other words, that f attains its supremum

(i.e., its | · |-norm) on B̃. By Observation, |F | = supF (C̃) = supF (y0 + η2B).
Since y0 + η2B ⊂ Y , we obtain

|F | = sup(C̃ ∩ Y ) = sup f(B̃) = |f |.

Hence F attains its | · |-norm on C̃. It follows easily from Lemma that F attains
its supremum on y0 + η2B. But this means that f attains its supremum on B,
which contradicts our choice of f .
To prove (4), take t = 1 + η = f(y0). Denote

D = conv
[
C ∪ (z0 + εL) ∪ (−z0 + εL) ∪ (−y0 + η2B)

]
.

It is easy to see that sup f(D) = ‖f‖ = 1 and C̃ = conv
[
D ∪ (y0 + η2B)

]
.

Let us consider the slice S = C̃ ∩ F−1
(
[1 + η,+∞)

)
(which contains the set

B̃ ∩ f−1
(
[1+ η,+∞)

)
and the point y0). Every point x ∈ S can be written in the

form
x = λndn + (1− λn)(y0 + η2bn) + en,

where λn ∈ [0, 1], dn ∈ D, bn ∈ B (for each n) and ‖en‖ → 0 as n → ∞. We have

1 + η ≤ F (x) ≤ λnF (dn) + (1− λn)
(
F (y0) + η2‖F‖

)
+ F (en)

≤ λn + (1 − λn)(1 + η + η2) + |F (en)| ,

which implies λn ≤ η(1+ η)−1+ η−1(1+ η)−1 |F (en)| ≤ η+(1/η) |F (en)|. Using

the facts that dn, y0 ∈ C̃ and ‖·‖ ≤ (1 + 2ε)| · |, we obtain

‖x − y0‖ ≤ λn‖dn − y0‖+ (1− λn)η
2‖bn‖+ ‖en‖

≤ 2(1 + 2ε)λn + η2 + ‖en‖

≤ 2(1 + 2ε)
(
η + (1/η)|F (en)|

)
+ η2 + ‖en‖.

Passing to limit for n → ∞ gives ‖x − y0‖ ≤ 2η(1 + 2ε) + η2. Since x was an
arbitrary element of S, we conclude that

‖·‖-diam(S) ≤ 4η(1 + 2ε) + 2η2 < ε

for η small enough. This proves (4), and completes the proof of Theorem. �

In view of Proposition above, we can state the following corollary which relates
our Theorem to the previously known results mentioned in the beginning of this
paper.
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Corollary. Let N be the set of all equivalent norms on a non-reflexive Banach
space X , equipped with the metric d(p, q) = sup{|p(x) − q(x)| : x ∈ BX},
p, q ∈ N . There exists a dense subset N0 of N such that each norm p ∈ N0
satisfies:

(X, p) contains a triangle with no Chebyshev center,
hence (X, p) is not norm-one complemented in its bidual,
hence (X, p) is not isometric to any dual space.

Problem. In the notation of Corollary, is the set N0 residual in N ?

Acknowledgment. The author thanks the referee for several remarks that im-
proved the readability of the present paper.
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