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On exit laws for semigroups in weak duality

Imed Bachar

Abstract. Let P := (Pt)t>0 be a measurable semigroup and m a σ-finite positive measure
on a Lusin space X. An m-exit law for P is a family (ft)t>0 of nonnegative measurable
functions on X which are finite m-a.e. and satisfy for each s, t > 0 Psft = fs+t m-a.e.
An excessive function u is said to be in R if there exits an m-exit law (ft)t>0 for P such
that u =

R
∞

0
ft dt, m-a.e.

Let P be the cone of m-purely excessive functions with respect to P and ImV be
the cone of m-potential functions. It is clear that ImV ⊆ R ⊆ P. In this paper
we are interested in the converse inclusion. We extend some results already obtained
under the assumption of the existence of a reference measure. Also, we give an integral
representation of the mutual energy function.
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1. Introduction

Let X be a Lusin metrizable topological space with its Borel tribe B. We denote
by B+ the cone of nonnegative Borel functions onX and byM the class of σ-finite
positive measures on (X,B).

In the sequel, let P := (Pt)t>0 and P̂ := (P̂t)t>0 be two submarkovian mea-
surable semigroups on (X,B), in weak duality with respect to a fixed measure
m ∈ M, namely,

(1)

∫
Ptf(x)g(x)m(dx) =

∫
f(x)P̂tg(x)m(dx), ∀ t > 0, ∀ f, g ∈ B+.

The potential kernels V :=
∫ ∞
0 Pt dt and V̂ :=

∫ ∞
0 P̂t dt are assumed to be proper

and satisfy the unicity of charges, that is, for each µ, ν ∈ M

(2) if µV̂ = νV̂ ∈ M then µ = ν.

Throughout this paper we denote by F the set of Borel nonnegative functions
which are finite m-a.e. and by E the cone of functions u ∈ F which are excessive
with respect to P.
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Let R be the cone of functions u ∈ E such that there exists an m-exit law
(ft)t>0 for P satisfying

u =

∫ ∞

0
ft dt, m-a.e.

Denote by P := {u ∈ E : inft→∞ Ptu = o m-a.e.}, the cone of purely excessive
functions with respect to P and ImV := {u ∈ E : u = V ϕ m-a.e. for some
ϕ ∈ B+}.

Each object related to P̂ is equipped with “ˆ”, so we define as above Ê and R̂.
Finally, we denote by ≺ the strong m-domination order defined by E .

Obviously, we have the natural inclusion R ⊆ P , while in [10] Hmissi proved
that R = P provided that εxPt ≪ m for each x ∈ X and t > 0 (where εx denotes
the Dirac mass at x) and in [12] he showed that if P is a lattice semigroup then
R = ImV . Furthermore, Hmissi gave an example of a nonlattice semigroup for
which R = ImV .

The first purpose of this paper is to give necessary and sufficient conditions on

P̂ such that R = P . More precisely, we prove the following

Theorem 1. The following statements are equivalent:

(i) R = P ;

(ii) for every µ ∈ M, if µV̂ ≪ m then µP̂t ≪ m for all t > 0.

As an application we obtain an integral representation of the mutual energy.

The second purpose of this paper is to give necessary and sufficient conditions

on P̂ for R = ImV ∩ V (M) (where V (M) will be defined later). More precisely,
we have the following result:

Theorem 2. The following statements are equivalent:

(i) ImV = R∩ V (M);

(ii) for every µ ∈ M, if µP̂t ≪ m for all t > 0 then µ≪ m.

In Section 3 we suppose that the semigroup P is defined by a vaguely continuous
convolution semigroup on X = R

n (n ≥ 1). Then we prove the existence of
the largest element of R in the strong m-domination order which is strongly m-
dominated by a given function u ∈ P . Namely,

Theorem 3. Let u ∈ P . Then there exist a function r(u) ∈ R such that
r(u) ≺ u and for each function v ∈ R satisfying v ≺ u, we have v ≺ r(u).

Note that the above result has been established by Hmissi ([11], Theorem 2.4)
under the assumption of existence of a reference measure.
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2. Characterization of R

2.1 Exit laws in weak duality.

For the coming definitions we refer to [1], [3], [8] and [9].

Definition 1. (i) A family (ft)t>0 ⊂ F is called an m-exit law for P if

(3) Psft = fs+t m-a.e. for each s, t > 0.

(ii) Two m-exit laws (ft)t>0 and (gt)t>0 are equivalent if ft = gt m-a.e. for
each t > 0.

Remark 1. Let (ft)t>0be an m-exit law for P such that u :=
∫ ∞
0 ft dt ∈ F .

Then Ptu = V ft m-a.e. for each t > 0 and by [9, (6.19)] there exists v ∈ E such
that u = v m-a.e.

Definition 2. A function u ∈ E will be called the potential of a measure µ ∈ M
if u ·m = µV̂ , and we write u = V (µ) (see [8, (3.5)]).
In the sequel, we denote

M := {µ ∈ M : u ·m = µV̂ with u ∈ E}

and
V (M) := {V (µ) : µ ∈ M}.

Remark 2. (i) ImV ⊆ R ∩ V (M) and R ⊆ P .
(ii) Let P be the heat semigroup on R

n+1. Then we have ImV 6= R∩ V (M)
and R 6= P .

We recall that an entrance law for P̂ is a family (µt)t>0 ⊂ M such that

(4) µtP̂s = µs+t for each s, t > 0.

To prove Theorem 1, we need the following representation theorem (see K. Janssen
[13]).

Theorem 4. Any purely excessive measure µ can be uniquely decomposed as

the integral µ =
∫ ∞
0 µt dt of an entrance law (µt)t>0 with respect to P.

Proof of Theorem 1: (ii) ⇒ (i). Let u ∈ P , then the measure u ·m is purely

excessive with respect to P̂. So by Theorem 4 there exists a unique entrance law

(νt)t>0 for P̂ such that

(5) u ·m =

∫ ∞

0
νt dt.



714 I. Bachar

Using (1) and (4) it follows that νtV̂ = (Ptu) ·m ≤ u ·m for each t > 0. Hence,

νt = ν t

2

P̂ t

2

≪ m for each t > 0.

Let (ft)t>0 ⊂ F be such that νt = ft ·m for each t > 0. Using again (1) and
(4) we check that (ft)t>0 is an m-exit law with respect to P. We deduce by (5)
that u ∈ R.

(i) ⇒ (ii). Let µ ∈ M and V (µ) ∈ P be such that

(6) µV̂ = V (µ) ·m =

∫ ∞

0
(µP̂t) dt.

Let (ft)t>0 be an m-exit law with respect to P such that

(7) V (µ) ·m =

∫ ∞

0
(ft ·m) dt.

From (3) and (1) we check that (ft ·m)t>0 is an entrance law with respect to P̂.

Therefore by (2), (6) and (7), we have µP̂t = ft ·m for each t > 0.

Hence, µP̂t ≪ m for each t > 0. �

Proof of Theorem 2: (i) ⇒ (ii). Let µ ∈ M be such that µP̂t ≪ m for each
t > 0. Then there exists V (µ) ∈ E which satisfies

(8) µV̂ = V (µ) ·m.

Let (ft)t>0 ⊂ F such that µP̂t = ft ·m for each t > 0. By (1) and (4) it is easy
to check that (ft)t>0 is an m-exit law with respect to P, and from (8) it follows
that V (µ) ∈ R ∩ V (M). Now by (i), there exists a function ϕ ∈ B+ such that

µV̂ = V (µ) ·m = V (ϕ) ·m. Hence, using (1) and (2) we deduce that µ≪ m.

(ii) ⇒ (i). Let u ∈ R∩V (M). There exists an m-exist law for P, (ft)t>0 ⊂ F ,
and µ ∈ M such that

(9) u ·m =

∫ ∞

0
(ft ·m) dt = µV̂ =

∫ ∞

0
(µP̂t) dt.

Using again (2) we get µP̂t = ft ·m for each t > 0.
Let ϕ ∈ B+ satisfy µ = ϕ ·m. Then we get u ∈ ImV by (1). �

2.2 Mutual energy formula.

Definition 3 (see [5, XII, 39]). For (u, v) ∈ E × Ê , the mutual energy E(u, v) is
defined by

E(u, v) := sup{m(ϕ · v), ϕ ∈ B+, V ϕ ≤ u}(10)

= sup{m(u · ψ), ψ ∈ B+, V̂ ψ ≤ v}.(11)
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Remark 3. Let u, u1 ∈ E and v, v1 ∈ Ê be such that u = u1 m-a.e. and v = v1
m-a.e. Then, using (10) and (11) we deduce that E(u, v) = E(u1, v1).

We recall briefly the following properties of E (cf. [5]).

Proposition 1.

(a) E(V f, v) =
∫
f(x)v(x)m(dx) for each f ∈ B+ such that V f ∈ E and

v ∈ Ê .
(b) If (un)n ⊂ E ր u ∈ E then (E(un, v))n ր E(u, v) for each v ∈ Ê .

(c) E(αu1 + βu2, v) = αE(u1, v) + βE(u2, v) for each u1, u2 ∈ E , v ∈ Ê and
α, β ≥ 0.

Proposition 2. For each (u, v) ∈ R × R̂ we have the following integral repre-
sentation of the mutual energy:

E(u, v) = 2

∫ ∞

0

∫
X
ft(x)gt(x)m(dx) dt,

where (ft)t>0 ((gt)t>0) is an m-exit law for P (P̂) such that u =
∫ ∞
0 ft dt m-a.e.

(v =
∫ ∞
0 gt dt m-a.e., respectively ).

Proof: Let t > 0. Since Ptu = V ft m-a.e. and P̂tv = V̂ gt m-a.e., we have by
Remark 3 and Proposition 1,

E(Ptu, P̂tv) =

∫
X
ft(x)V̂ gt(x)m(dx)

=

∫ ∞

0

∫
X
ft(x)P̂sgt(x)m(dx) ds

=

∫ ∞

0

∫
X
P s

2
ft(x)P̂ s

2
gt(x)m(dx) ds

=

∫ ∞

0

∫
X
Psft(x)P̂sgt(x)m(dx) ds

= 2

∫ ∞

t

∫
X
fs(x)gs(x)m(dx) ds.

Therefore by the monotone convergence theorem and Proposition 1, we have

E(u, v) = sup
t→0

E(Ptu, P̂tv) = 2

∫ ∞

0

∫
X
fs(x)gs(x)m(dx) ds.

�
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Remark 4. Suppose that εxPt ≪ m and εxP̂t ≪ m for each t > 0, x ∈ X , and
let G be the unique density of V and V̂ with respect to m (see [3, XII,72]). Let
µ, ν ∈ M be such that

Gµ :=

∫
G(., y)µ(dy) ∈ F and νG :=

∫
G(x, .)ν(dx) ∈ F .

Then it is well known that E(Gµ, νG) =
∫∫
G(x, y)µ(dy)ν(dx). But since in

general the cone R contains strictly the cone {Gµ : µ ∈ M, Gµ ∈ F} (see
[10, 3.2(2)]) by Proposition 2 we have obtained an integral representation of the

mutual energy for a wider class in E × Ê .

2.3 Examples.

2.3.1 Compound Poisson.

Let c > 0 and M,N be two submarkovian kernels on (X,B) in weak duality with

respect to a fixed σ-finite measure m. Let P
N := (PN

t )t>0 be the submarkovian
semigroup defined for each t > 0 by

Pt
N := ect(N−I) = e−ct

∞∑
k=0

(ct)k

k!
Nk.

Note that the triplet (PN , PM , m) satisfies (1) and (2).
In this case, conditions (ii) of Theorem 2 and Theorem 3 are obviously satisfied.
Hence ImV = R∩ V (M) and P = R.

2.3.2 Semigroups in strong duality.

Assume that εxV ≪ m and εxV̂ ≪ m for each x ∈ X . In this case, condition (ii)

of Theorem 2 is equivalent to εxP̂t ≪ m for each x ∈ X and t > 0.
Therefore Theorem 2 extends Theorem 3.3 in [10].

2.3.3 Lattice semigroups.

Suppose that P is a measurable lattice semigroup of kernels on (X,B), i.e.

Pt|f | = |Ptf |, for f ∈ B and t > 0.

Then, condition (ii) of Theorem (3) is an obvious consequence of [12, Proposi-
tion 2.2]. Hence ImV = R∩ V (M), and so we find again the result given in [12,
Corollary 2.5].

2.3.4 Nearly symmetric semigroups.

Assume that P and P̂ satisfy the sector condition (see [4]). Then using [8, Propo-
sition 3.8] and [4, Theorem 5.1] we deduce that condition (ii) of Theorem 2 is
valid and, therefore, R = P .
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2.3.5 Uniform motion on R.

Let X = R and P := (Pt)t>0 the uniform motion on X defined by

Ptf(x) = f(x+ t), t > 0, x ∈ R and f ∈ B+(R).

Then R 6= P by Theorem 1.

3. Decomposition of elements in P

In this section, we suppose that X = R
n(n ≥ 1) and we denote bym the Lebesgue

measure on R
n. Let (µt)t>0 be a convolution semigroup on R

n (see [1]) and
P := (Pt)t>0 be the associated semigroup of submarkovian kernels defined by

(12) Ptf(x) :=

∫
f(x+ y)µt(dy), t > 0, x ∈ R

n, f ∈ B+.

In the sequel we suppose that
∫ ∞
0 µt(f) dt <∞ for each f ∈ C+c .

If we denote by µ̂t the centrally symmetric image of µt and by P̂t the induced
kernel given by formula (12), then P := (Pt)t>0 and P̂ := (P̂t)t>0 are in weak

duality with respect to m and V, V̂ satisfy the unicity of charges.

In general R 6= P . So we shall investigate the existence of the largest element of
R in the strong m-domination order which is strongly m-dominated by a given
function u ∈ P .

Definition 4. A function v ∈ E strongly m-dominates a function v ∈ E and we
write u ≺ v if there exists w ∈ E with v = u+ w m-a.e.

To prove Theorem 3 we need the following

Lemma 1. Let µ ∈ M and Aµ := {ν ∈ M : ν ≤ µ and νP̂t ≪ m ∀ t > 0}. Put
ν0 := supAµ. Then we have ν0 ∈ Aµ.

Proof: Let µ ∈ M.

(i) If ν, ν′ ∈ Aµ then since sup(ν, ν
′) ≤ ν + ν′, we get sup(ν, ν′) ∈ Aµ.

(ii) If B ∈ B is such that µ(B) <∞, then supν∈Aµ
ν(B) ≤ µ(B) <∞.

Hence there exists a sequences (νk) ⊂ Aµ such that

(13) lim
k→∞

νk(B) = sup
ν∈Aµ

ν(B).

Using (i) we can assume that (νk) is nondecreasing in (13). Let ν∞ := lim
k→∞

νk.

Then we have ν∞P̂t ≪ m for any t > 0 and for each ν ∈ Aµ, 1Bν ≤ 1Bν∞.
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(iii) Write R
n =

⋃∞
p=0Bp with (Bp)p ր in B, p → ∞, and µ(Bp) < ∞ for each

p ∈ N. Then using (ii), for each p ∈ N there exists a sequence (νp,k) in Aµ such
that (νp,k)k ր (k → ∞) and

lim
k→∞

νp,k(Bp) = sup
ν∈Aµ

ν(Bp).

Therefore ν0 = limk→∞ νk,k and ν0 ∈ Aµ by (ii). �

Proof of Theorem 3: Let u ∈ P and µ ∈ M be the unique measure (see [1,
Theorem 16.7]) such that

(14) u ·m = µV̂ .

Let Aµ := {ν ∈ M : ν ≤ µ and νP̂t ≪ m ∀ t > 0} and ν0 := supAµ. Then it
follows from Lemma 1 that ν0 ∈ Aµ. Now consider (ft)t>0 ⊂ F such that

(15) ν0P̂t = ft ·m for each t > 0.

By (1) and (4) one can check that (ft)t>0 is an m-exit law with respect to P.
Therefore, by integrating (15) and using Remark 1 there exists a function r(u) ∈ R

such that r(u) ·m = ν0V̂ . Now since ν0 ≤ µ, it follows from (14) that r(u) ≺ u.
Finally, let v ∈ R satisfy v ≺ u. Then (see [1, Theorem 16.7]) there exist σ ∈ M

such that v ·m = σV̂ . Using (2) we get σ ≤ ν0 and, hence, v ≺ r(u). �
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