On exit laws for semigroups in weak duality

Imed Bachar

Abstract. Let $\mathbb{P} := (P_t)_{t>0}$ be a measurable semigroup and $m \neq \sigma$ -finite positive measure on a Lusin space X. An *m*-exit law for \mathbb{P} is a family $(f_t)_{t>0}$ of nonnegative measurable functions on X which are finite *m*-a.e. and satisfy for each s, t > 0 $P_s f_t = f_{s+t}$ *m*-a.e. An excessive function u is said to be in \mathcal{R} if there exits an *m*-exit law $(f_t)_{t>0}$ for \mathbb{P} such that $u = \int_0^\infty f_t dt$, *m*-a.e.

Let \mathcal{P} be the cone of *m*-purely excessive functions with respect to \mathbb{P} and $\mathcal{I}mV$ be the cone of *m*-potential functions. It is clear that $\mathcal{I}mV \subseteq \mathcal{R} \subseteq \mathcal{P}$. In this paper we are interested in the converse inclusion. We extend some results already obtained under the assumption of the existence of a reference measure. Also, we give an integral representation of the mutual energy function.

Keywords: semigroup, weak duality, exit law

Classification: 31D05, 60J45

1. Introduction

Let X be a Lusin metrizable topological space with its Borel tribe \mathcal{B} . We denote by \mathcal{B}^+ the cone of nonnegative Borel functions on X and by \mathcal{M} the class of σ -finite positive measures on (X, \mathcal{B}) .

In the sequel, let $\mathbb{P} := (P_t)_{t>0}$ and $\hat{\mathbb{P}} := (\hat{P}_t)_{t>0}$ be two submarkovian measurable semigroups on (X, B), in weak duality with respect to a fixed measure $m \in \mathcal{M}$, namely,

(1)
$$\int P_t f(x)g(x)m(dx) = \int f(x)\hat{P}_t g(x)m(dx), \ \forall t > 0, \ \forall f, g \in \mathcal{B}^+.$$

The potential kernels $V := \int_0^\infty P_t dt$ and $\hat{V} := \int_0^\infty \hat{P}_t dt$ are assumed to be proper and satisfy the unicity of charges, that is, for each $\mu, \nu \in \mathcal{M}$

(2) if
$$\mu \hat{V} = \nu \hat{V} \in \mathcal{M}$$
 then $\mu = \nu$.

Throughout this paper we denote by \mathcal{F} the set of Borel nonnegative functions which are finite *m*-a.e. and by \mathcal{E} the cone of functions $u \in \mathcal{F}$ which are excessive with respect to \mathbb{P} .

Let \mathcal{R} be the cone of functions $u \in \mathcal{E}$ such that there exists an *m*-exit law $(f_t)_{t>0}$ for \mathbb{P} satisfying

$$u = \int_0^\infty f_t \, dt, \, m$$
-a.e.

Denote by $\mathcal{P} := \{ u \in \mathcal{E} : \inf_{t \to \infty} P_t u = o \text{ } m\text{-a.e.} \}$, the cone of purely excessive functions with respect to \mathbb{P} and $\mathcal{I}mV := \{ u \in \mathcal{E} : u = V\varphi \text{ } m\text{-a.e.} \text{ for some } \varphi \in \mathcal{B}^+ \}$.

Each object related to $\hat{\mathbb{P}}$ is equipped with "^", so we define as above $\hat{\mathcal{E}}$ and $\hat{\mathcal{R}}$. Finally, we denote by \prec the strong *m*-domination order defined by \mathcal{E} .

Obviously, we have the natural inclusion $\mathcal{R} \subseteq \mathcal{P}$, while in [10] Hmissi proved that $\mathcal{R} = \mathcal{P}$ provided that $\varepsilon_x P_t \ll m$ for each $x \in X$ and t > 0 (where ε_x denotes the Dirac mass at x) and in [12] he showed that if \mathbb{P} is a lattice semigroup then $\mathcal{R} = \mathcal{I}mV$. Furthermore, Hmissi gave an example of a nonlattice semigroup for which $\mathcal{R} = \mathcal{I}mV$.

The first purpose of this paper is to give necessary and sufficient conditions on $\hat{\mathbb{P}}$ such that $\mathcal{R} = \mathcal{P}$. More precisely, we prove the following

Theorem 1. The following statements are equivalent:

As an application we obtain an integral representation of the mutual energy.

The second purpose of this paper is to give necessary and sufficient conditions on $\hat{\mathbb{P}}$ for $\mathcal{R} = \mathcal{I}mV \cap V(\mathbb{M})$ (where $V(\mathbb{M})$ will be defined later). More precisely, we have the following result:

Theorem 2. The following statements are equivalent:

- (i) $\mathcal{I}mV = \mathcal{R} \cap V(\mathbb{M});$
- (ii) for every $\mu \in \mathcal{M}$, if $\mu \hat{P}_t \ll m$ for all t > 0 then $\mu \ll m$.

In Section 3 we suppose that the semigroup \mathbb{P} is defined by a vaguely continuous convolution semigroup on $X = \mathbb{R}^n$ $(n \ge 1)$. Then we prove the existence of the largest element of \mathcal{R} in the strong *m*-domination order which is strongly *m*-dominated by a given function $u \in \mathcal{P}$. Namely,

Theorem 3. Let $u \in \mathcal{P}$. Then there exist a function $r(u) \in \mathcal{R}$ such that $r(u) \prec u$ and for each function $v \in \mathcal{R}$ satisfying $v \prec u$, we have $v \prec r(u)$.

Note that the above result has been established by Hmissi ([11], Theorem 2.4) under the assumption of existence of a reference measure.

2. Characterization of \mathcal{R}

2.1 Exit laws in weak duality.

For the coming definitions we refer to [1], [3], [8] and [9].

Definition 1. (i) A family $(f_t)_{t>0} \subset \mathcal{F}$ is called an *m*-exit law for \mathbb{P} if

(3)
$$P_s f_t = f_{s+t} m \text{-a.e. for each } s, t > 0.$$

(ii) Two *m*-exit laws $(f_t)_{t>0}$ and $(g_t)_{t>0}$ are equivalent if $f_t = g_t$ *m*-a.e. for each t > 0.

Remark 1. Let $(f_t)_{t>0}$ be an *m*-exit law for \mathbb{P} such that $u := \int_0^\infty f_t dt \in \mathcal{F}$. Then $P_t u = V f_t$ *m*-a.e. for each t > 0 and by [9, (6.19)] there exists $v \in \mathcal{E}$ such that u = v *m*-a.e.

Definition 2. A function $u \in \mathcal{E}$ will be called the potential of a measure $\mu \in \mathcal{M}$ if $u \cdot m = \mu \hat{V}$, and we write $u = V(\mu)$ (see [8, (3.5)]).

In the sequel, we denote

$$\mathbb{M} := \{ \mu \in \mathcal{M} : u \cdot m = \mu \hat{V} \text{ with } u \in \mathcal{E} \}$$

and

$$V(\mathbb{M}) := \{ V(\mu) : \mu \in \mathbb{M} \}.$$

Remark 2. (i) $\mathcal{I}mV \subseteq \mathcal{R} \cap V(\mathbb{M})$ and $\mathcal{R} \subseteq \mathcal{P}$.

(ii) Let \mathbb{P} be the heat semigroup on \mathbb{R}^{n+1} . Then we have $\mathcal{I}mV \neq \mathcal{R} \cap V(\mathbb{M})$ and $\mathcal{R} \neq \mathcal{P}$.

We recall that an entrance law for $\hat{\mathbb{P}}$ is a family $(\mu_t)_{t>0} \subset \mathcal{M}$ such that

(4)
$$\mu_t \hat{P}_s = \mu_{s+t} \text{ for each } s, t > 0.$$

To prove Theorem 1, we need the following representation theorem (see K. Janssen [13]).

Theorem 4. Any purely excessive measure μ can be uniquely decomposed as the integral $\mu = \int_0^\infty \mu_t dt$ of an entrance law $(\mu_t)_{t>0}$ with respect to \mathbb{P} .

PROOF OF THEOREM 1: (ii) \Rightarrow (i). Let $u \in \mathcal{P}$, then the measure $u \cdot m$ is purely excessive with respect to $\hat{\mathbb{P}}$. So by Theorem 4 there exists a unique entrance law $(\nu_t)_{t>0}$ for $\hat{\mathbb{P}}$ such that

(5)
$$u \cdot m = \int_0^\infty \nu_t \, dt.$$

Using (1) and (4) it follows that $\nu_t \hat{V} = (P_t u) \cdot m \leq u \cdot m$ for each t > 0. Hence, $\nu_t = \nu_{\frac{t}{2}} \hat{P}_{\frac{t}{2}} \ll m$ for each t > 0.

Let $(f_t)_{t>0} \subset \mathcal{F}$ be such that $\nu_t = f_t \cdot m$ for each t > 0. Using again (1) and (4) we check that $(f_t)_{t>0}$ is an *m*-exit law with respect to \mathbb{P} . We deduce by (5) that $u \in \mathcal{R}$.

(i) \Rightarrow (ii). Let $\mu \in \mathcal{M}$ and $V(\mu) \in \mathcal{P}$ be such that

(6)
$$\mu \hat{V} = V(\mu) \cdot m = \int_0^\infty (\mu \hat{P}_t) dt$$

Let $(f_t)_{t>0}$ be an *m*-exit law with respect to \mathbb{P} such that

(7)
$$V(\mu) \cdot m = \int_0^\infty (f_t \cdot m) \, dt.$$

From (3) and (1) we check that $(f_t \cdot m)_{t>0}$ is an entrance law with respect to $\hat{\mathbb{P}}$. Therefore by (2), (6) and (7), we have $\mu \hat{P}_t = f_t \cdot m$ for each t > 0. Hence, $\mu \hat{P}_t \ll m$ for each t > 0.

PROOF OF THEOREM 2: (i) \Rightarrow (ii). Let $\mu \in \mathcal{M}$ be such that $\mu \hat{P}_t \ll m$ for each t > 0. Then there exists $V(\mu) \in \mathcal{E}$ which satisfies

(8)
$$\mu \hat{V} = V(\mu) \cdot m.$$

Let $(f_t)_{t>0} \subset \mathcal{F}$ such that $\mu \hat{P}_t = f_t \cdot m$ for each t > 0. By (1) and (4) it is easy to check that $(f_t)_{t>0}$ is an *m*-exit law with respect to \mathbb{P} , and from (8) it follows that $V(\mu) \in \mathcal{R} \cap V(\mathbb{M})$. Now by (i), there exists a function $\varphi \in \mathcal{B}^+$ such that $\mu \hat{V} = V(\mu) \cdot m = V(\varphi) \cdot m$. Hence, using (1) and (2) we deduce that $\mu \ll m$.

(ii) \Rightarrow (i). Let $u \in \mathcal{R} \cap V(\mathbb{M})$. There exists an *m*-exist law for \mathbb{P} , $(f_t)_{t>0} \subset \mathcal{F}$, and $\mu \in \mathcal{M}$ such that

(9)
$$u \cdot m = \int_0^\infty (f_t \cdot m) \, dt = \mu \hat{V} = \int_0^\infty (\mu \hat{P}_t) \, dt.$$

Using again (2) we get $\mu \hat{P}_t = f_t \cdot m$ for each t > 0. Let $\varphi \in \mathcal{B}^+$ satisfy $\mu = \varphi \cdot m$. Then we get $u \in \mathcal{I}mV$ by (1).

2.2 Mutual energy formula.

Definition 3 (see [5, XII, 39]). For $(u, v) \in \mathcal{E} \times \hat{\mathcal{E}}$, the mutual energy E(u, v) is defined by

(10)
$$E(u,v) := \sup\{m(\varphi \cdot v), \varphi \in \mathcal{B}^+, V\varphi \le u\}$$

(11)
$$= \sup\{m(u \cdot \psi), \quad \psi \in \mathcal{B}^+, \quad \hat{V}\psi \le v\}.$$

Remark 3. Let $u, u_1 \in \mathcal{E}$ and $v, v_1 \in \hat{\mathcal{E}}$ be such that $u = u_1$ *m*-a.e. and $v = v_1$ *m*-a.e. Then, using (10) and (11) we deduce that $E(u, v) = E(u_1, v_1)$.

We recall briefly the following properties of E (cf. [5]).

Proposition 1.

- (a) $E(Vf, v) = \int f(x)v(x)m(dx)$ for each $f \in \mathcal{B}^+$ such that $Vf \in \mathcal{E}$ and $v \in \hat{\mathcal{E}}$.
- (b) If $(u_n)_n \subset \mathcal{E} \nearrow u \in \mathcal{E}$ then $(E(u_n, v))_n \nearrow E(u, v)$ for each $v \in \hat{\mathcal{E}}$. (c) $E(\alpha u_1 + \beta u_2, v) = \alpha E(u_1, v) + \beta E(u_2, v)$ for each $u_1, u_2 \in \mathcal{E}, v \in \hat{\mathcal{E}}$ and $\alpha, \beta > 0.$

Proposition 2. For each $(u, v) \in \mathcal{R} \times \hat{\mathcal{R}}$ we have the following integral representation of the mutual energy:

$$E(u,v) = 2 \int_0^\infty \int_X f_t(x)g_t(x)m(dx) \, dt,$$

where $(f_t)_{t>0}$ $((g_t)_{t>0})$ is an *m*-exit law for $\mathbb{P}(\hat{\mathbb{P}})$ such that $u = \int_0^\infty f_t dt$ *m*-a.e. $(v = \int_0^\infty g_t dt m$ -a.e., respectively).

PROOF: Let t > 0. Since $P_t u = V f_t$ *m*-a.e. and $\hat{P}_t v = \hat{V} g_t$ *m*-a.e., we have by Remark 3 and Proposition 1,

$$\begin{split} E(P_t u, \hat{P}_t v) &= \int_X f_t(x) \hat{V}g_t(x) m(dx) \\ &= \int_0^\infty \int_X f_t(x) \hat{P}_s g_t(x) m(dx) \, ds \\ &= \int_0^\infty \int_X P_{\frac{s}{2}} f_t(x) \hat{P}_{\frac{s}{2}} g_t(x) m(dx) \, ds \\ &= \int_0^\infty \int_X P_s f_t(x) \hat{P}_s g_t(x) m(dx) \, ds \\ &= 2 \int_t^\infty \int_X f_s(x) g_s(x) m(dx) \, ds. \end{split}$$

Therefore by the monotone convergence theorem and Proposition 1, we have

$$E(u,v) = \sup_{t \to 0} E(P_t u, \hat{P}_t v) = 2 \int_0^\infty \int_X f_s(x) g_s(x) m(dx) \, ds.$$

Remark 4. Suppose that $\varepsilon_x P_t \ll m$ and $\varepsilon_x \hat{P}_t \ll m$ for each $t > 0, x \in X$, and let G be the unique density of V and \hat{V} with respect to m (see [3, XII,72]). Let $\mu, \nu \in \mathcal{M}$ be such that

$$G\mu:=\int G(.,y)\mu(dy)\in \mathcal{F} \quad \text{and} \quad \nu G:=\int G(x,.)\nu(dx)\in \mathcal{F}.$$

Then it is well known that $E(G\mu, \nu G) = \iint G(x, y)\mu(dy)\nu(dx)$. But since in general the cone \mathcal{R} contains strictly the cone $\{G\mu : \mu \in \mathcal{M}, G\mu \in \mathcal{F}\}$ (see [10, 3.2(2)]) by Proposition 2 we have obtained an integral representation of the mutual energy for a wider class in $\mathcal{E} \times \hat{\mathcal{E}}$.

2.3 Examples.

2.3.1 Compound Poisson.

Let c > 0 and M, N be two submarkovian kernels on (X, \mathcal{B}) in weak duality with respect to a fixed σ -finite measure m. Let $\mathbb{P}^N := (P_t^N)_{t>0}$ be the submarkovian semigroup defined for each t > 0 by

$$P_t^N := e^{ct(N-I)} = e^{-ct} \sum_{k=0}^{\infty} \frac{(ct)^k}{k!} N^k.$$

Note that the triplet $(\mathbb{P}^N, \mathbb{P}^M, m)$ satisfies (1) and (2).

In this case, conditions (ii) of Theorem 2 and Theorem 3 are obviously satisfied. Hence $\mathcal{I}mV = \mathcal{R} \cap V(\mathbb{M})$ and $\mathcal{P} = \mathcal{R}$.

2.3.2 Semigroups in strong duality.

Assume that $\varepsilon_x V \ll m$ and $\varepsilon_x \hat{V} \ll m$ for each $x \in X$. In this case, condition (ii) of Theorem 2 is equivalent to $\varepsilon_x \hat{P}_t \ll m$ for each $x \in X$ and t > 0. Therefore Theorem 2 extends Theorem 3.3 in [10].

2.3.3 Lattice semigroups.

Suppose that \mathbb{P} is a measurable lattice semigroup of kernels on (X, \mathcal{B}) , i.e.

$$P_t|f| = |P_tf|$$
, for $f \in \mathcal{B}$ and $t > 0$.

Then, condition (ii) of Theorem (3) is an obvious consequence of [12, Proposition 2.2]. Hence $\mathcal{I}mV = \mathcal{R} \cap V(\mathbb{M})$, and so we find again the result given in [12, Corollary 2.5].

2.3.4 Nearly symmetric semigroups.

Assume that \mathbb{P} and $\hat{\mathbb{P}}$ satisfy the sector condition (see [4]). Then using [8, Proposition 3.8] and [4, Theorem 5.1] we deduce that condition (ii) of Theorem 2 is valid and, therefore, $\mathcal{R} = \mathcal{P}$.

2.3.5 Uniform motion on \mathbb{R} .

Let $X = \mathbb{R}$ and $\mathbb{P} := (P_t)_{t>0}$ the uniform motion on X defined by

$$P_t f(x) = f(x+t), \quad t > 0, \ x \in \mathbb{R} \text{ and } f \in \mathcal{B}^+(\mathbb{R}).$$

Then $\mathcal{R} \neq \mathcal{P}$ by Theorem 1.

3. Decomposition of elements in \mathcal{P}

In this section, we suppose that $X = \mathbb{R}^n (n \ge 1)$ and we denote by m the Lebesgue measure on \mathbb{R}^n . Let $(\mu_t)_{t>0}$ be a convolution semigroup on \mathbb{R}^n (see [1]) and $\mathbb{P} := (P_t)_{t>0}$ be the associated semigroup of submarkovian kernels defined by

(12)
$$P_t f(x) := \int f(x+y)\mu_t(dy), \quad t > 0, \ x \in \mathbb{R}^n, \ f \in \mathcal{B}^+.$$

In the sequel we suppose that $\int_0^\infty \mu_t(f) dt < \infty$ for each $f \in C_c^+$.

If we denote by $\hat{\mu}_t$ the centrally symmetric image of μ_t and by \hat{P}_t the induced kernel given by formula (12), then $\mathbb{P} := (P_t)_{t>0}$ and $\hat{\mathbb{P}} := (\hat{P}_t)_{t>0}$ are in weak duality with respect to m and V, \hat{V} satisfy the unicity of charges.

In general $\mathcal{R} \neq P$. So we shall investigate the existence of the largest element of \mathcal{R} in the strong *m*-domination order which is strongly *m*-dominated by a given function $u \in \mathcal{P}$.

Definition 4. A function $v \in \mathcal{E}$ strongly *m*-dominates a function $v \in \mathcal{E}$ and we write $u \prec v$ if there exists $w \in \mathcal{E}$ with v = u + w *m*-a.e.

To prove Theorem 3 we need the following

Lemma 1. Let $\mu \in \mathcal{M}$ and $A_{\mu} := \{\nu \in \mathcal{M} : \nu \leq \mu \text{ and } \nu \hat{P}_t \ll m \forall t > 0\}$. Put $\nu_0 := \sup A_{\mu}$. Then we have $\nu_0 \in A_{\mu}$.

PROOF: Let $\mu \in \mathcal{M}$.

(i) If $\nu, \nu' \in A_{\mu}$ then since $\sup(\nu, \nu') \leq \nu + \nu'$, we get $\sup(\nu, \nu') \in A_{\mu}$.

(ii) If $B \in \mathcal{B}$ is such that $\mu(B) < \infty$, then $\sup_{\nu \in A_{\mu}} \nu(B) \le \mu(B) < \infty$.

Hence there exists a sequences $(\nu_k) \subset A_{\mu}$ such that

(13)
$$\lim_{k \to \infty} \nu_k(B) = \sup_{\nu \in A_{\mu}} \nu(B).$$

Using (i) we can assume that (ν_k) is nondecreasing in (13). Let $\nu_{\infty} := \lim_{k \to \infty} \nu_k$. Then we have $\nu_{\infty} \hat{P}_t \ll m$ for any t > 0 and for each $\nu \in A_{\mu}$, $1_B \nu \leq 1_B \nu_{\infty}$.

(iii) Write $\mathbb{R}^n = \bigcup_{p=0}^{\infty} B_p$ with $(B_p)_p \nearrow$ in $\mathcal{B}, p \to \infty$, and $\mu(B_p) < \infty$ for each $p \in \mathbb{N}$. Then using (ii), for each $p \in \mathbb{N}$ there exists a sequence $(\nu_{p,k})$ in A_{μ} such that $(\nu_{p,k})_k \nearrow (k \to \infty)$ and

$$\lim_{k \to \infty} \nu_{p,k}(B_p) = \sup_{\nu \in A_{\mu}} \nu(B_p).$$

Therefore $\nu_0 = \lim_{k \to \infty} \nu_{k,k}$ and $\nu_0 \in A_{\mu}$ by (ii).

PROOF OF THEOREM 3: Let $u \in \mathcal{P}$ and $\mu \in \mathcal{M}$ be the unique measure (see [1, Theorem 16.7]) such that

(14)
$$u \cdot m = \mu \hat{V}.$$

Let $A_{\mu} := \{ \nu \in \mathcal{M} : \nu \leq \mu \text{ and } \nu \hat{P}_t \ll m \ \forall t > 0 \}$ and $\nu_0 := \sup A_{\mu}$. Then it follows from Lemma 1 that $\nu_0 \in A_{\mu}$. Now consider $(f_t)_{t>0} \subset \mathcal{F}$ such that

(15)
$$\nu_0 \hat{P}_t = f_t \cdot m \text{ for each } t > 0.$$

By (1) and (4) one can check that $(f_t)_{t>0}$ is an *m*-exit law with respect to \mathbb{P} . Therefore, by integrating (15) and using Remark 1 there exists a function $r(u) \in \mathcal{R}$ such that $r(u) \cdot m = \nu_0 \hat{V}$. Now since $\nu_0 \leq \mu$, it follows from (14) that $r(u) \prec u$. Finally, let $v \in \mathcal{R}$ satisfy $v \prec u$. Then (see [1, Theorem 16.7]) there exist $\sigma \in \mathcal{M}$ such that $v \cdot m = \sigma \hat{V}$. Using (2) we get $\sigma \leq \nu_0$ and, hence, $v \prec r(u)$.

Acknowledgments. I thank Professor M. Hmissi for useful discussions. I also thank the referee for his careful reading of the paper.

References

- Berg C., Forst G., Potential theory on locally compact Abellian Groups, Springer-Verlag, Berlin-Heidelberg-New York, 1975.
- [2] Boboc N., Bucut G., Cornea A.: Order and Convexity in Potential Theory, Lecture Notes in Math. 853, Springer, Berlin-Heidelberg-New York, 1980.
- [3] Dellacherie C., Meyer P.A., Probabilités et Potentiel, Chapter XII XVI, Herman, 1987.
- [4] Fitzsimmons P.J., Markov processes and non symmetric Dirichlet forms without regularity, J. Funct. Anal. 85 (1989), 287–306.
- [5] Fitzsimmons P.J., Getoor R.K., On the potential theory of symmetric Markov processes, Math. Ann. 281 (1988), 495–512.
- [6] Fukushima M., Dirichlet Forms and Markov Processes, North-Holland, Amsterdam-Oxford-New York, 1980.
- [7] Getoor R.K., Excessive Measures, Birkhäuser Processes, 1990.
- [8] Getoor R.K., Glover J., Riesz decomposition in Markov process theory, Trans. Amer. Math. Soc. 285 (1989), 107–132.
- [9] Getoor R.K., Sharpe M.P., Naturality standardness and weak duality for Markov processes, Z. Wahrsch verw. Gebiete 67 (1984), 1–62.
- [10] Hmissi M., Lois de sortie et semi-groupes basiques, Manuscripta Math. 75 (1992), 293–302.

- [11] Hmissi M., Sur la représentation par les lois de sortie, Math. Z. 213 (1993), 647-656.
- [12] Hmissi M., On the functional equation of exit laws for lattice semi-groups, Ann. Ecole Normale Superieure de Cracowie 196 (1998), 63–72.
- [13] Janssen K., Representation of excessive measures, Sem. Stoch. Processes Birkhäuser, Boston, Mass., 1987, pp. 85–105.
- [14] Silverstein M., Symmetric Markov Processes, Lecture Notes in Math. 426, Springer, Berlin-Heidelberg-New York, 1974.

Département de mathématiques, Faculté des Sciences de Tunis, Campus Universitaire, 1060 Tunis, Tunisia

E-mail: Imed.Bachar@ipeigb.rnu.tn

(Received February 8, 2000, revised May 11, 2001)