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On exit laws for semigroups in weak duality

IMED BACHAR

Abstract. Let P := (P;)¢>0 be a measurable semigroup and m a o-finite positive measure
on a Lusin space X. An m-exit law for P is a family (ft):>0 of nonnegative measurable
functions on X which are finite m-a.e. and satisfy for each s,t > 0 Psft = fs4+ m-a.e.
An excessive function u is said to be in R if there exits an m-exit law (ft)¢>o0 for P such
that v = fooo frdt, m-a.e.

Let P be the cone of m-purely excessive functions with respect to P and ZmV be
the cone of m-potential functions. It is clear that ZmV C R C P. In this paper
we are interested in the converse inclusion. We extend some results already obtained
under the assumption of the existence of a reference measure. Also, we give an integral
representation of the mutual energy function.
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1. Introduction

Let X be a Lusin metrizable topological space with its Borel tribe B. We denote
by BT the cone of nonnegative Borel functions on X and by M the class of o-finite
positive measures on (X, B).

In the sequel, let P := (P;);~0 and P := (B)¢>0 be two submarkovian mea-
surable semigroups on (X, B), in weak duality with respect to a fixed measure
m € M, namely,

W [ Ps@g@m) = [ 1@Pg@mds), ve>0,¥f.g € B,

The potential kernels V := [ P; dt and Vo= Jo? Py dt are assumed to be proper
and satisfy the unicity of charges, that is, for each u,v € M

(2) if WV =vVeM then pu=v.
Throughout this paper we denote by F the set of Borel nonnegative functions

which are finite m-a.e. and by £ the cone of functions v € F which are excessive
with respect to P.
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Let R be the cone of functions u € £ such that there exists an m-exit law
(ft)t>o0 for P satisfying

o0
U :/ frdt, m-a.e.
0

Denote by P := {u € £ : inft_,oo Psu = 0 m-a.e.}, the cone of purely excessive
functions with respect to P and ZmV := {u € £ : u = Vy m-a.e. for some
p € BT},

Each object related to Pis equipped with “"”, so we define as above & and R.
Finally, we denote by < the strong m-domination order defined by £.

Obviously, we have the natural inclusion R C P, while in [10] Hmissi proved
that R = P provided that e, P, < m for each € X and ¢t > 0 (where ¢, denotes
the Dirac mass at z) and in [12] he showed that if P is a lattice semigroup then

R = ImV. Furthermore, Hmissi gave an example of a nonlattice semigroup for
which R =ZImV.

The first purpose of this paper is to give necessary and sufficient conditions on
P such that R = P. More precisely, we prove the following

Theorem 1. The following statements are equivalent:
(i) R ="P;
(ii) for every p € M, if uV < m then puP; < m for all t > 0.

As an application we obtain an integral representation of the mutual energy.

The second purpose of this paper is to give necessary and sufficient conditions
on P for R = ZmV NV (M) (where V(M) will be defined later). More precisely,
we have the following result:

Theorem 2. The following statements are equivalent:
(i) ZmV = RNV (M);
(ii) for every p € M, if pPy < m for all t > 0 then p < m.

In Section 3 we suppose that the semigroup P is defined by a vaguely continuous
convolution semigroup on X = R™ (n > 1). Then we prove the existence of
the largest element of R in the strong m-domination order which is strongly m-
dominated by a given function u € P. Namely,

Theorem 3. Let u € P. Then there exist a function r(u) € R such that
r(u) < w and for each function v € R satisfying v < u, we have v < r(u).

Note that the above result has been established by Hmissi ([11], Theorem 2.4)
under the assumption of existence of a reference measure.
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2. Characterization of R

2.1 Exit laws in weak duality.
For the coming definitions we refer to [1], [3], [8] and [9].

Definition 1. (i) A family (f¢)>0 C F is called an m-exit law for P if
3) Psft = fs4t m-a.e. for each s,t > 0.

(ii) Two m-exit laws (ft)r>0 and (g¢)r>0 are equivalent if f; = g; m-a.e. for
each t > 0.

Remark 1. Let (ft);>obe an m-exit law for P such that u := [j° fydt € F.
Then Piu = V fy m-a.e. for each t > 0 and by [9, (6.19)] there exists v € £ such
that u = v m-a.e.

Definition 2. A function u € £ will be called the potential of a measure p € M
if u-m=puV, and we write u = V() (see [8, (3.5)]).
In the sequel, we denote

M:={peM:u-m=uV with ueé&}

and
V(M) :={V(u) : p € M}.

Remark 2. (i) ZmV CRNV(M) and R C P.
(ii) Let P be the heat semigroup on R"*!. Then we have ZmV # RNV (M)
and R # P.

We recall that an entrance law for P is a family (ut)¢>0 C M such that
(4) wiPs = pstt for each s,t > 0.

To prove Theorem 1, we need the following representation theorem (see K. Janssen
[13]).

Theorem 4. Any purely excessive measure p can be uniquely decomposed as
the integral p = fooo pt dt of an entrance law (put)¢~0 with respect to P.

PROOF OF THEOREM 1: (ii) = (i). Let u € P, then the measure u - m is purely
excessive with respect to P. So by Theorem 4 there exists a unique entrance law
(vt)¢>0 for P such that

[e.e]
(5) u-m:/ vy dt.
0
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Using (1) and (4) it follows that 14V = (Pu)-m < u - m for each ¢ > 0. Hence,
v = vt Py < m for each t > 0.

2 2
Let (ft)¢>0 C F be such that vy = f; - m for each ¢t > 0. Using again (1) and
(4) we check that (ft)¢>0 is an m-exit law with respect to P. We deduce by (5)
that u € R.

(i) = (ii). Let p € M and V(i) € P be such that

(6) AW—VWWm—AmeMt

Let (ft)e>0 be an m-exit law with respect to P such that
o0
@ Vi m= [ hem)

From (3) and (1) we check that (f; - m);>0 is an entrance law with respect to P.
Therefore by (2), (6) and (7), we have uP; = f; - m for each ¢ > 0.
Hence, uP; < m for each t > 0. (]

PROOF OF THEOREM 2: (i) = (ii). Let u € M be such that uP; < m for each
t > 0. Then there exists V(u) € € which satisfies

®) pV =V(g)-m

Let (ft)i>0 C F such that uP; = f; - m for each ¢t > 0. By (1) and (4) it is easy
to check that (fi)r>0 is an m-exit law with respect to P, and from (8) it follows
that V(p) € RN V(M). Now by (i), there exists a function ¢ € BT such that
uwV =V () -m=V(p)-m. Hence, using (1) and (2) we deduce that pu < m.

(if) = (i). Let uw € RNV(M). There exists an m-exist law for P, (ft)t>0 C F,
and p € M such that

9) u-m= / (fo-m)dt =pV = / (uPy) dt.

Using again (2) we get wP; = fi-m for each t > 0.
Let ¢ € BT satisfy u = - m. Then we get u € ZmV by (1). O

2.2 Mutual energy formula.

Definition 3 (see [5, XII, 39]). For (u,v) € £ x &, the mutual energy E(u,v) is
defined by

(10) E(u,v) := sup{m(p-v), @€ BT, Ve <u}
(11) = sup{m(u-v), € BT, Vi < v}.
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Remark 3. Let u,u; € £ and v,v1 € € be such that u = u] m-a.e. and v = v
m-a.e. Then, using (10) and (11) we deduce that E(u,v) = E(uy,v1).

We recall briefly the following properties of E (cf. [5]).

Proposition 1.

(a) E Vf, = [ f(x)v(z)m(dz) for each f € Bt such that Vf € £ and
veé.

() If (un)n CE / u € & then (E(un,v))n / E(u,v) for each v € E.

(¢) E(auy + Pug,v) = aFE(ui,v) + SE(ug,v) for each uj,ug € €, v € & and
a, 3>0.

Proposition 2. For each (u,v) € R X R we have the following integral repre-
sentation of the mutual energy:

E(u,v) = 2/000 /X fe(x)ge(x)m(dx) dt,

where (f¢)¢>0 ((g¢)¢>0) is an m-exit law for P (P) such that u = [° f; dt m-a.e.
(v = [y° gt dt m-a.e., respectively).

PRrROOF: Let t > 0. Since Pou = V f; m-a.e. and Ptv = Vgt m-a.e., we have by
Remark 3 and Proposition 1,

E(Ptu,Ptv):/Xft(x)f/gt(x)m(dac)

-/ " [ Pawmidn ds
= /O > /X Ps ft(:v)f’%gt(x)m(d:v) ds

_ /0 - /X Py fu(@) Page(w)m(da) ds

—o /t h /X f5()gs ()m(dz) ds.

Therefore by the monotone convergence theorem and Proposition 1, we have

E(uv)—supE(PtuPtv_z/ /fs 2)gs (2)m(dz) ds.

t—0
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Remark 4. Suppose that e, P < m qnd e Py < m for each t > 0,z € X, and
let G be the unique density of V' and V with respect to m (see [3, XII,72]). Let
w1, v € M be such that

G,u—/G w(dy) € F and vG := /G Jv(de) € F.

Then it is well known that E(Gu,vG) = [[ G(z,y)u(dy)v(dz). But since in
general the cone R contains strictly the cone {Gu : ,u E M, Gu € F} (see
[10, 3.2(2)]) by Proposition 2 we have obtained an integral representation of the
mutual energy for a wider class in £ x £

2.3 Examples.

2.3.1 Compound Poisson.

Let ¢ > 0 and M, N be two submarkovian kernels on (X B) in weak duality with
respect to a fixed o-finite measure m. Let PV := (Pt )t>0 be the submarkovian
semigroup defined for each ¢t > 0 by

Note that the triplet (P, PM, m) satisfies (1) and (2).

In this case, conditions (ii) of Theorem 2 and Theorem 3 are obviously satisfied.
Hence ZmV =R NV (M) and P = R.

2.3.2 Semigroups in strong duality.

Assume that ¢,V < m and e,V < m for each z € X. In this case, condition (ii)
of Theorem 2 is equivalent to ¢, P; < m for each x € X and ¢ > 0.

Therefore Theorem 2 extends Theorem 3.3 in [10].
2.3.3 Lattice semigroups.

Suppose that P is a measurable lattice semigroup of kernels on (X, B), i.e
Pi|f| = |Pif|, for f€B and t>0.

Then, condition (ii) of Theorem (3) is an obvious consequence of [12, Proposi-
tion 2.2]. Hence ZmV = R NV (M), and so we find again the result given in [12,
Corollary 2.5].

2.3.4 Nearly symmetric semigroups.

Assume that P and P satisfy the sector condition (see [4]). Then using [8, Propo-
sition 3.8] and [4, Theorem 5.1] we deduce that condition (ii) of Theorem 2 is
valid and, therefore, R = P.
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2.3.5 Uniform motion on R.
Let X =R and P := (P;)¢~0 the uniform motion on X defined by

Pif(z) = f(x+t), t>0, 2€R and f < BT (R).
Then R # P by Theorem 1.

3. Decomposition of elements in P

In this section, we suppose that X = R™(n > 1) and we denote by m the Lebesgue
measure on R™. Let (u¢)r>0 be a convolution semigroup on R™ (see [1]) and
P := (Pt)¢>0 be the associated semigroup of submarkovian kernels defined by

(12) Pif(z) ::/f(:c—i—y)ut(dy), £>0, 2 €R", feB",

In the sequel we suppose that fooo pt(f) dt < oo for each f € CF.

If we denote by ji; the centrally symmetric image of ¢ and by Py the induced
kernel given by formula (12), then P := (P;);>0 and P := (P));~0 are in weak
duality with respect to m and V, 14 satisfy the unicity of charges.

In general R # P. So we shall investigate the existence of the largest element of
R in the strong m-domination order which is strongly m-dominated by a given
function u € P.

Definition 4. A function v € & strongly m-dominates a function v € £ and we
write u < v if there exists w € £ with v = u + w m-a.e.

To prove Theorem 3 we need the following

Lemma 1. Let p € M and Ay :={v € M :v <y and vP, < m ¥Vt > 0}. Put
vy :=sup Ay,. Then we have vy € A,.

PROOF: Let u € M.
(i) If v,/ € A, then since sup(v,v') < v+ 1/, we get sup(v,1/) € A,.

(ii) If B € B is such that u(B) < oo, then sup,¢c 4, ¥(B) < u(B) < cc.
Hence there exists a sequences () C Ay such that
(13) lim vi(B) = sup v(B).
k—oo VEA;,L
Using (i) we can assume that (vg) is nondecreasing in (13). Let voo := klim V.
— 00

Then we have veo Py < m for any t > 0 and for each v € Ay, 1pv < 1pve.
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(i) Write R" = (J,2¢ Bp with (Bp)p /" in B, p — oo, and u(Bp) < oo for each
p € N. Then using (ii), for each p € N there exists a sequence (v, ) in A, such
that (v )i /" (k — oo) and

klim Vpk(Bp) = sup v(Bp).
—0o0 vEA,

Therefore 19 = limy,_, o vy, 1, and vg € Ay, by (ii). O

PRrROOF OF THEOREM 3: Let u € P and 1 € M be the unique measure (see [1,
Theorem 16.7]) such that

(14) w-m=puV.

Let Ay :={ve M:v <pand vP, < mVt >0} and v := sup A,. Then it
follows from Lemma 1 that vy € Ay,. Now consider (ft);~0 C F such that

(15) voPy = fr-m for each t> 0.

By (1) and (4) one can check that (fi)r>0 is an m-exit law with respect to P.
Therefore, by integrating (15) and using Remark 1 there exists a function r(u) € R
such that r(u) - m = V. Now since vy < p, it follows from (14) that r(u) < w.
Finally, let v € R satisfy v < u. Then (see [1, Theorem 16.7]) there exist o € M
such that v -m = oV. Using (2) we get o < 19 and, hence, v < 7(u). O
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