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Change-point estimator in continuous quadratic regression

Daniela Jarušková

Abstract. The paper deals with the asymptotic distribution of the least squares estimator
of a change point in a regression model where the regression function has two phases —
the first linear and the second quadratic. In the case when the linear coefficient after
change is non-zero the limit distribution of the change point estimator is normal whereas
it is non-normal if the linear coefficient is zero.
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1. Introduction

In applications we often observe a sequence of random variables Y1, . . . , Yn that
is related to a sequence of regression constants x1, . . . , xn by a linear relationship

Yi = a+ b xi + ei, i = 1, . . . , n,

where {ei} are i.i.d. errors. However, it can happen that at some unknown time
point t∗ the relationship between {Yi} and {xi} changes in the following way:

(1) Yi = a∗ + b∗ xi + β∗ (xi − t∗)+ + ei, i = 1, . . . , n.

The model (1) is called bi-linear and can be applied, for example, when the stress-
strain relationship for certain types of material is studied. It describes an idealized
behavior where a material is perfectly elastic until an elastic limit strain and after
it becomes plastic. However, there exist also some other materials that behave
differently. For some of them we suppose that the stress-strain relationship has
three phases, i.e. elastic, inelastic and plastic. Here, the stress-strain relationship
corresponding to the first two phases is often described by the model:

(2) Yi = a∗ + b∗ xi + β∗(xi − t∗)+ + γ∗(xi − t∗)2+ + ei, i = 1, . . . , n.

The basic statistical problem is to estimate the change-point t∗ as well as the
other unknown parameters. The problem of parameters estimation in the bi-
linear model (1) was solved by several authors, e.g. Hinkley (1969), Feder (1975),
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Bhattacharya (1990), Hušková (1998). In our paper we deal with parameters
estimation in the model (2). However, we simplify the model (2) and suppose
that the parameters a∗ and b∗ are known so that without any loss of generality
they may be set to zero. The generalization of our result for the case a∗ 6= 0 and/or
b∗ 6= 0 includes no other mathematical difficulties. Moreover, we suppose that
the explanatory variable attains equidistant values and therefore the regression
constants {xi} may be set xi = i/n for i = 1, . . . , n and t∗ ∈ (0, 1). The variance
of random errors σ2 is supposed to be known so that it may be set to 1. By all
simplifications above we arrive to the model:

(3) Yi = β∗ (i/n− t∗)+ + γ∗ (i/n− t∗)2+ + ei, i = 1, . . . , n,

where {ei} are i.i.d. with E ei = 0 and E e2i = 1. Finally, for mathematical
simplicity we take time in reverse order and instead of (3) we consider the following
model:

(4) Yi = β∗ (t∗ − i/n)+ + γ∗ (t∗ − i/n)2+ + ei, i = 1, . . . , n,

with coefficients β∗ 6= 0 and/or γ∗ 6= 0 and errors {ei} that are i.i.d. with E ei = 0,

E e2i = 1 and E |ei|2+∆ < ∞.
In our paper the least squares estimators of unknown parameters t∗, β∗ and

γ∗ are considered. Obviously, for normally distributed random errors {ei} the
maximum likelihood estimators coincide with the least squares estimators. We
suppose that t∗ ∈ [δ, 1 − δ] for a certain known constant δ ∈ (0, 1/2) so that
the least squares estimators t̂∗, β̂∗, γ̂∗ are solutions of the following minimization
problem:

(5) min
{

Sn(t, β, γ); t ∈ [δ, 1− δ], β ∈ R1, γ ∈ R1
}

with

Sn(t, β, γ) =

n∑

i=1

(
Yi − β(t − i/n)+ − γ(t − i/n)2+

)2
.

The model under the study (4) is a non-linear regression model. It can be
proved that the least squares estimators are consistent as n tends to infinity. The
aim of the present paper is to find their asymptotic distribution.
We would like to mention that the problem described above was in a com-

pletely different setting treated by Feder (1975). In his paper he found the right
rate of convergence. Unfortunately, as the model (4) does not always fulfill the
assumptions of his theorems, we were not able to apply them directly to find
the asymptotic distribution. The method applied here is the method derived by
Hušková (1998, 1999).
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2. Main theorems

Supposing γ∗ 6= 0, the limit behavior of the studied least squares estimates
differ completely in two different cases, i.e. whether β∗ 6= 0 or β∗ = 0. For β∗ 6= 0
the limit distribution of estimators t̂∗, β̂∗ and γ̂∗ is normal as expected, while for
β∗ = 0 the studied distribution is not normal.
Before we state the main theorems it is convenient to realize that the least

squares estimator t̂∗ is the argument that minimizes Sn(t, β̃t, γ̃t), over the interval
[δ, 1− δ], where

Sn(t, β̃t, γ̃t) = min
β∈R1, γ∈R1

[nt]∑

i=1

(
Yi − β

(
t − (i/n)

)
+ − γ

(
t − (i/n)

)2
+

)2
,

and it is the same value that maximizes (over the same interval)

Y
T
n Dn(t)

(
D

T
n (t)Dn(t)

)−1
D

T
n (t)Yn − Y

T
n Dn(t

∗)
(
D

T
n (t

∗)Dn(t
∗)

)−1
D

T
n (t

∗)Yn

with

Dn(t) =




t − 1
n

(
t − 1

n

)2
...

...
t − [nt]

n

(
t − [nt]

n

)2
0 0
...

...
0 0




, Yn =




Y1
...

Yn


 .

Theorem A. Suppose that β∗ 6= 0. Then n1/2
(
t̂∗ − t∗, β̂∗ − β∗, γ̂∗ − γ∗

)
has

asymptotically a zero-mean normal distribution with a variance-covariancematrix

G
−1, where

G =




β∗2t∗ + 4β∗γ∗t∗2/2 + 4γ∗2t∗3/3 . . . . . .

β∗t∗2/2 + 2γ∗t∗3/3 t∗3/3 . . .

β∗t∗3/3 + 2γ∗t∗4/4 t∗4/4 t∗5/5


 .

Especially, it means that n1/2(t̂∗ − t∗) has asymptotically a normal distribution

N
(
0, 9

β∗2 t∗

)
.

Proof: The proof of Theorem A follows the same pattern as in Hušková (1998).
�
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Theorem B. Suppose that β∗ = 0 and γ∗ 6= 0. Let (Z1, Z2, Z3) be a normal
vector with zero mean and the following variance – covariance matrix:




t∗ t∗2/2 t∗3/3
t∗2/2 t∗3/3 t∗4/4
t∗3/3 t∗4/4 t∗5/5


 .

Let us introduce a random variable X = −Z1 +
4
t∗ Z2 − 10

3 t∗2
Z3 having a normal

distribution N(0, t∗/9) and U+ = max(0, X/γ∗). Then as n → ∞

L
(
n1/2(t̂∗ − t∗)2

)
→ L

( 9
t∗

U+
)
≡ max

(
0, N

(
0,
9

γ∗2t∗
))

,(6)

L
(
n1/2β̂∗2

)
→ L

(36
t∗

γ∗2 U+

)
≡ max

(
0, N

(
0,
144 γ∗2

t∗
))

,(7)

L
(
n1/2

(
γ̂∗ − γ∗

))
→ L

(
− 30

t∗3
γ∗ U+ − 60

t∗4
Z2 +

80

t∗5
Z3

)
,(8)

L
(
Sn

(
t∗, β̃t∗ , γ̃t∗

)
− Sn

(
t̂∗, β̂∗, γ̂∗

))
→ L

( 9
t∗

γ∗2U2+
)
≡

(
max

(
0, N(0, 1)

))2
.(9)

Proof: Denoting k = [nt] and k∗ = [nt∗] we introduce

rn
jl(t

∗, t) =
1

n

min(k∗,k)∑

i=1

(t∗ − i/n)j(t − i/n)l for j, l = 1, 2,

R
n(t∗, t)= || rn

jl(t
∗, t) ||2j,l=1,

r
n
2.(t

∗, t) =
(
rn
21(t

∗, t), rn
22(t

∗, t)
)
,

d
n(t∗, t) =

(
dn
1 (t

∗, t), dn
2 (t

∗, t)
)
= r

n
2.(t

∗, t)
(
R

n(t, t)
)−1

,

e
n(t) =

( 1√
n

k∑

i=1

(t − i/n) ei,
1√
n

k∑

i=1

(t − i/n)2ei

)
,

e
n(t∗) =

( 1√
n

k∗∑

i=1

(t∗ − i/n) ei,
1√
n

k∗∑

i=1

(t∗ − i/n)2ei

)
.

By introducing

Cn(t∗, t) = r
n
2.(t

∗, t)
(
R

n(t, t)
)−1(

r
n
2.(t

∗, t)
)T − 1

n

k∗∑

i=1

(t∗ − i/n)4,

Bn(t∗, t) = r
n
2.(t

∗, t)
(
R

n(t, t)
)−1(

e
n(t)

)T − 1√
n

k∗∑

i=1

(t∗ − i/n)2ei,

An(t∗, t) = e
n(t)

(
R

n(t, t)
)−1(

e
n(t)

)T − e
n(t∗)

(
R

n(t∗, t∗)
)−1(

e
n(t∗)

)T
,
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we can express

Sn(t, β̃t, γ̃t) − Sn(t
∗, β̃t∗ , γ̃t∗) = n γ∗2Cn(t∗, t) + 2

√
n γ∗Bn(t∗, t) + An(t∗, t).

Further we introduce

rjl(t
∗, t) =

∫ 1

0
(t∗ − x)j+(t − x)l+ dx for j, l = 1, 2,

R(t, t) = || rjl(t, t) ||2j,l=1,
r2.(t

∗, t) =
(
r21(t

∗, t), r22(t∗, t)
)
,

d(t∗, t) = r2.(t
∗, t)

(
R(t, t)

)−1
=

(
d1(t

∗, t), d2(t∗, t)
)
,

C(t∗, t) = r2.(t
∗, t)

(
R(t, t)

)−1(
r2.(t

∗, t)
)T − t∗5/5.

Clearly

R(t, t) =

(
t3/3 t4/4
t4/4 t5/5

)
,

(
R(t, t)

)−1
=

(
48/t3 −60/t4

−60/t4 80/t5

)
,

d(t∗, t∗) = (0, 1).

Lemma 1. It holds

(10)

∣∣∣
∣∣∣
((

R
n(t, t)

)−1 −
(
R

n(t∗, t∗)
)−1) −

((
R(t, t)

)−1 −
(
R(t∗, t∗)

)−1)∣∣∣
∣∣∣

= O
( | t − t∗|

n

)
,

∣∣∣
∣∣∣ d

n(t∗, t)− d(t∗, t)
∣∣∣
∣∣∣ = O

( | t − t∗|
n

)
,

|Cn(t∗, t)− C(t∗, t)| = O
( | t − t∗|

n

)
,

and

(11)

d1(t
∗, t) = −2 (t − t∗) + 4

(t − t∗)2

t∗
+ 4
(t − t∗)3

t∗2
+ o

(
(t − t∗)4

)
,

d2(t
∗, t) = 1− 10

3

(t − t∗)2

t∗
+
20

3

(t − t∗)3

t∗2
− 5(t − t∗)4

t∗3
+ o

(
(t − t∗)4

)
,

C(t∗, t) = − t∗

9
(t − t∗)4 + o

(
(t − t∗)4

)
.

Proof: As for j, l = 1, 2

rn
jl(t

∗, t)− rn
jl(t

∗, t∗) = rjl(t
∗, t)− rjl(t

∗, t∗) + O
(
| t − t∗|/n

)
,

rn
jl(t, t)− rn

jl(t
∗, t∗) = rjl(t, t)− rjl(t

∗, t∗) + O
(
| t − t∗|/n

)
,

rn
jl(t

∗, t)− rjl(t
∗, t) = O

(
1/n

)
,
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the approximations (10) hold true. The assertions (11) are the Taylor expansions
of the corresponding terms. �

To prove the following two lemmas we apply the relationships between e
n(t)

and e
n(t∗) together with the expansion of d(t∗, t)

(
e

n(t)
)T − en

2 (t
∗):

For t∗ < t

k∑

i=1

(t − i/n) ei =

k∗∑

i=1

(t∗ − i/n) ei + (t − t∗)
k∗∑

i=1

ei

+
k∑

i=k∗+1

(t∗ − i/n) ei + (t − t∗)
k∑

i=k∗+1

ei,

k∑

i=1

(t − i/n)2ei =

k∗∑

i=1

(t∗ − i/n)2 ei + 2 (t − t∗)
k∗∑

i=1

(t∗ − i/n) ei + (t − t∗)2
k∗∑

i=1

ei

+

k∑

i=k∗+1

(t∗ − i/n)2 ei + 2 (t − t∗)
k∑

i=k∗+1

(t∗ − i/n) ei + (t − t∗)2
k∑

i=k∗+1

ei,

and

√
nd(t∗, t)

(
e

n(t)
)T −

k∗∑

i=1

(t∗ − i/n)2ei =

(12)

(
−2(t − t∗) +

4

t∗
(t − t∗)2 +K1(t) (t − t∗)3

)( k∑

i=1

(t − i/n) ei

)
+

(
−10
3

1

t∗
(t − t∗)2 +K2(t)(t − t∗)3

)( k∑

i=1

(t − i/n)2ei

)
+

( k∑

i=1

(t − i/n)2ei −
k∗∑

i=1

(t∗ − i/n)2ei

)
=

(
−2(t − t∗) +

4

t∗
(t − t∗)2 +K1(t) (t − t∗)3

)( k∑

i=1

(t − i/n) ei −
k∗∑

i=1

(t∗ − i/n) ei

)
+

( 4
t∗
(t − t∗)2 +K1(t) (t − t∗)3

)( k∗∑

i=1

(t∗ − i/n) ei

)
+

(
−10
3

1

t∗2
(t − t∗)2 +K2(t) (t − t∗)3

)( k∑

i=1

(t − i/n)2ei

)
+ (t − t∗)2

k∗∑

i=1

ei+
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k∑

i=k∗+1

(t∗ − i/n)2 ei + 2 (t − t∗)
k∑

i=k∗+1

(t∗ − i/n) ei + (t − t∗)2
k∑

i=k∗+1

ei,

where K1(t) and K2(t) are some continuous function on [δ, 1− δ].
A similar relationship can be shown for t < t∗.

Lemma 2. It holds

(13) t̂∗ − t∗ = OP

(
(1/n)1/4

)
as n → ∞.

Proof: It is known that

t̂∗ − t∗ = oP (1) as n → ∞,

see Seber and Wild (1989). Moreover, Feder (1975) showed that

t̂∗ − t∗ = OP

(
(ln lnn/n)1/4

)
as n → ∞.

As

C(t∗, t)=
−(t − t∗)4 t∗5

(
9(t − t∗) + 5 t∗

)

45 t5
for t − t∗ > 0,

C(t∗, t)=
(t − t∗)4

(
4 (t − t∗)− 5 t∗

)

45
for t − t∗ < 0,

there exist a constant K and n0 ∈ N such that for n ≥ n0

Cn(t∗, t) ≤ −K(t − t∗)4 for t, t∗ ∈ (0, 1).
For the assertion (13) it is sufficient to prove that for any sequence {rn} such that
rn → ∞

(14) max
| t−t∗|≥ rn

n1/4

|2 γ∗
√

nBn(t∗, t) +An(t∗, t)|
γ∗2n(t − t∗)4

= oP (1) as n → ∞.

Using the law of iterated logarithm we may show

max
| t−t∗|≥ rn

n1/4

∣∣∣
∑max(k,k∗)

i=min(k,k∗)+1
ei

∣∣∣
n |γ∗(t − t∗)2| = oP (1),

max
| t−t∗|≥ rn

n1/4

∣∣∣
∑max(k,k∗)

i=min(k,k∗)+1
(t∗ − i/n) ei

∣∣∣
n |γ∗(t − t∗)3| = oP (1),

max
| t−t∗|≥ rn

n1/4

∣∣∣
∑max(k,k∗)

i=min(k,k∗)+1
(t∗ − i/n)2ei

∣∣∣
n |γ∗(t − t∗)4| = oP (1),

as n → ∞. Now (14) follows from the preceding assertions and (12). �
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Lemma 3. For any sequence {rn} such that rn = o
(
n1/4/ ln lnn

)

max
|t−t∗|≤ rn

n1/4

|d(t∗, t)
(
e

n(t)
)T − en

2 (t
∗)− (t − t∗)2Xn(t

∗)|
(t − t∗)2

= oP (1).

as n → ∞, where

Xn(t
∗) = − 1√

n

[nt∗]∑

i=1

ei +
4

t∗
1√
n

[nt∗]∑

i=1

(t∗ − i/n)ei −
10

3 t∗2
1√
n

[nt∗]∑

i=1

(t∗ − i/n)2ei.

Proof: As n → ∞

max
| t−t∗|≤ rn

n1/4

∣∣∣
∑max(k,k∗)

i=min(k,k∗)+1
ei

∣∣∣
√

n
= oP (1),

max
| t−t∗|≤ rn

n1/4

∣∣∣
∑max(k,k∗)

i=min(k,k∗)+1
(t∗ − i/n) ei

∣∣∣
√

n | t − t∗| = oP (1),

max
| t−t∗|≤ rn

n1/4

∣∣∣
∑max(k,k∗)

i=min(k,k∗)+1
(t∗ − i/n)2 ei

∣∣∣
√

n (t − t∗)2
= oP (1).

Using (12) we get the assertion of Lemma 3. �

Notice that asymptoticallyXn(t
∗) has the same distribution asX , i.e. a normal

distribution N(0, t∗/9).

Lemma 4. For any arbitrary sequence {rn} such that rn = o
(
n1/4/ ln lnn

)

γ∗2 n Cn(t∗, t) + 2 γ∗
√

n Bn(t∗, t) + An(t∗, t) =

γ∗2
(
− t∗

9

)
n (t−t∗)4

(
1+o(1)

)
+ 2 γ∗Xn(t

∗)
√

n (t−t∗)2
(
1+oP (1)

)
+ OP (| t−t∗|)

as n → ∞ uniformly for |t − t∗| ≤ rn/n1/4.
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Proof: Lemma 4 is a consequence of Lemma 1, Lemma 3 and the fact that

max
|t−t∗|≤ rn

n1/4

An(t∗, t)
t − t∗

= OP (1).

�

As x = n1/2(t̂∗ − t∗)2 is the value maximizing the quadratic function
x

(
−(γ∗2t∗/9)x + 2γ∗Xn(t

∗)
)
over the set {x, x > 0} the assertion (6) of Theo-

rem B is proved. Since

(β̂∗, γ̂∗) = γ∗dn(t∗, t̂∗) +
1√
n

e
n(t̂∗)

(
R

n(t̂∗, t̂∗)
)−1

and

e
n(t̂∗)

(
R

n(t̂∗, t̂∗)
)−1 − e

n(t∗)
(
R

n(t∗, t∗)
)−1
= oP (1),

n1/4β̂∗ −
(
−2 γ∗ n1/4 (t̂∗ − t∗)

)
= oP (1),

n1/2(γ̂∗ − γ∗)−
(
−10
3

1

t∗2
γ∗ n1/2 (t̂∗ − t∗)2−

60

t∗4

( 1√
n

k∗∑

i=1

(t∗ − i/n) ei

)
+
80

t∗5

( 1√
n

k∗∑

i=1

(t∗ − i/n)2ei

))
= oP (1),

Sn
(
t∗, β̃t∗ , γ̃t∗

)
− Sn

(
t̂∗, β̂∗, γ̂∗

)
−

(
γ∗ n1/2 (t̂∗ − t∗)2

)2
(t∗/9) = oP (1),

(7), (8) and (9) hold true.

Remark 1. In Theorem B we supposed that γ∗ is a fixed value but the assertion
of Theorem B remains true even if γ∗n → 0 in a way that

(ln lnn)2

n1/2γ∗n
→ 0.

If we choose the sequence {rn} tending to infinity such that

r2n (ln lnn)2

n1/2γ∗n
→ 0,

we get

max
|t−t∗|≤ rn

n1/4|γ∗n|1/2

∣∣ ∑max(k,k∗)
i=min(k,k∗)+1

ei

∣∣
√

n
= OP

((ln lnn)1/2r
1/2
n

n1/8|γ∗n|1/4
)
= op(1),



750 D. Jarušková

max
|t−t∗|≥ rn

n1/4|γ∗n|1/2

∣∣ ∑max(k,k∗)
i=min(k,k∗)+1

ei

∣∣

n |γ∗n|(t − t∗)2
=

OP

((ln lnn)1/2

n1/2
1

|γ∗n|
( rn

n1/4|γ∗
n|1/2

)3/2
)
= oP (1).

Then the proof of Theorem B is analogous as for a fixed γ∗. �

Remark 2. Our simulation study showed that the limit distribution of (6) un-

derestimates the variability of t̂∗. As a consequence the symmetric (1 − α) 100%
confidence interval for t∗ based on (6), i.e.

(
−

(3 u1−α

γ∗

)1/2 1
t∗1/4

≤ n1/4(t̂∗ − t∗) ≤
(3 u1−α

γ∗

)1/2 1
t∗1/4

)
,

contains less than (1−α) 100% realizations of n1/4(t̂∗−t∗). In our simulation study
(10 000 repetitions) for n = 5 000, t∗ = 0.5 and γ∗ = 60 only 88.2% of realizations
of n1/2(t̂∗− t∗)2 have fallen into the 95% symmetric confidence interval. Figure 1
shows the histogram of t̂∗ for n = 5 000, t∗ = 0.5 and γ∗ = 60.

0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58
0

100

200
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700
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Table 1 presents relative frequencies of n1/2(t̂∗−t∗)2 γ∗
√

t∗

3 with n = 5 000, t∗ =
0.3, 0.5, 0.7, 0.9 and γ∗ = 60 obtained from simulation study (10 000 repetitions)
and probabilities calculated from the distribution of max(0, N(0, 1)) according
to (6).

rel. fr. rel. fr. rel. fr. rel. fr. prob.

interval t∗ = 0.3 t∗ = 0.5 t∗ = 0.7 t∗ = 0.9

0.00 – 0.25 0.4439 0.4890 0.5118 0.5270 0.5987
0.25 – 0.75 0.1937 0.1753 0.1752 0.1680 0.1747
0.75 – 1.25 0.1356 0.1437 0.1354 0.1352 0.1210
1.25 – 1.75 0.0961 0.0869 0.0957 0.0922 0.0656
1.75 – 2.25 0.0602 0.0591 0.0476 0.0427 0.0278
2.25 – 2.75 0.0352 0.0293 0.0230 0.0261 0.0092
2.75 – 3.25 0.0159 0.0110 0.0073 0.0064 0.0024
3.25 – 3.75 0.0089 0.0040 0.0029 0.0017 0.0005
3.75 –∞ 0.0105 0.0017 0.0011 0.0007 0.0001

Table 1. Relative frequencies and corresponding probabilities of the statistic√
n(t̂∗ − t∗)2γ∗

√
t∗/3 for n = 5 000, t∗ = 0.5 and γ∗ = 60.

Remark 3. Getting back to the model (2) with xi = i/n it can be derived
analogously as in TheoremA and B that if β∗ 6= 0 then the asymptotic distribution
of n1/2(t̂∗−t∗) is zero mean normal with the variance (4+5t∗)/

(
β∗2t∗(1−t∗)

)
. If

β∗ = 0 and γ∗ 6= 0 then n1/2(t̂∗ − t∗)2 is asymptotically distributed as U+ where

U has a zero mean normal distribution with the variance (4+5t∗)/
(
γ∗2t∗(1−t∗)

)
.

Remark 4. Theorem B gives the limit distribution of the unknown coefficients
t∗, β∗ and γ∗ in the model (4) in the case β∗ = 0. If we consider the least squares
estimator t̂∗ of the parameter t∗ in the model

Yi = γ∗ (t∗ − i/n)2+ + ei, i = 1, . . . , n, γ∗ 6= 0,

then n1/2(t̂∗ − t∗) has asymptotically a zero-mean normal distribution with the
variance 12/

(
γ∗2t∗3

)
. Moreover, Sn

(
t∗, γ̃t∗

)
− Sn

(
t̂∗, γ̂∗

)
has asymptotically χ2

distribution with one degree of freedom. The asymptotic distribution of the
change point estimator t̂∗ in the model

Yi = a+ b (i/n) + γ∗ (i/n − t∗)2+ + ei, i = 1, . . . , n, γ∗ 6= 0,

was given in Jarušková (1998).
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