Natural affinors on $(J^{r,s,q}(.,\mathbb{R}^{1,1})_0)^*$

Włodzimierz M. Mikulski

Abstract. Let $r, s, q, m, n \in \mathbb{N}$ be such that $s \geq r \leq q$. Let Y be a fibered manifold with m-dimensional basis and n-dimensional fibers. All natural affinors on $(J^{r,s,q}(Y, \mathbb{R}^{1,1})_0)^*$ are classified. It is deduced that there is no natural generalized connection on $(J^{r,s,q}(Y, \mathbb{R}^{1,1})_0)^*$. Similar problems with $(J^{r,s}(Y, \mathbb{R})_0)^*$ instead of $(J^{r,s,q}(Y, \mathbb{R}^{1,1})_0)^*$ are solved.

Keywords: bundle functors, natural transformations, natural affinors Classification: 58A20, 53A55

0. Let us recall the following definitions (see e.g. [3]).

Let $F : \mathcal{FM}_{m,n} \to \mathcal{FM}$ be a functor from the category $\mathcal{FM}_{m,n}$ of all fibered manifolds with *m*-dimensional bases and *n*-dimensional fibers and their local fibered diffeomorphisms into the category \mathcal{FM} of fibered manifolds and fibered maps. Let $\mathcal{B} : \mathcal{FM} \to \mathcal{M}f$ be the base functor from \mathcal{FM} into the category $\mathcal{M}f$ of manifolds. Let $\mathcal{T} : \mathcal{FM} \to \mathcal{M}f$ be the total space functor.

A bundle functor over $\mathcal{FM}_{m,n}$ is a (covariant) functor F satisfying $\mathcal{B} \circ F = \mathcal{T}_{|\mathcal{FM}_{m,n}|}$ and the localization condition: for every inclusion of an open subset $i_U : U \to Y$, FU is the restriction $p_Y^{-1}(U)$ of $p_Y : FY \to Y$ over U and Fi_U is the inclusion $p_Y^{-1}(U) \to FY$.

An affinor D on a manifold M is a tensor type (1,1), i.e. a linear morphism $D: TM \to TM$ over id_M .

A natural affinor on a bundle functor F is a system of affinors $D: TFY \to TFY$ on FY for every $\mathcal{FM}_{m,n}$ -object Y satisfying $TFf \circ D = D \circ TFf$ for every local $\mathcal{FM}_{m,n}$ -diffeomorphism $f: Y \to \overline{Y}$.

A connection on a fibre bundle Z is an affinor $\Gamma : TZ \to TZ$ on Z such that $\Gamma \circ \Gamma = \Gamma$ and $\operatorname{im}(\Gamma) = VZ$, the vertical bundle of Z.

A natural connection on a bundle functor F is a system of connections Γ : $TFY \to TFY$ on FY for every $\mathcal{FM}_{m,n}$ -object Y which is (additionally) a natural affinor on F.

In [5] it was shown how natural affinors Q on some bundle functor FY can be used to study the torsion $\tau = [\Gamma, Q]$ of connections Γ on FY. That is why, natural affinors have been classified in many papers, [1], [2], [7]–[11]. For example, in [2] natural affinors on the *r*-th order vector tangent bundle $(J^r(M, \mathbb{R})_0)^*$ over *m*-manifolds $M \in \operatorname{obj}(\mathcal{FM}_{m,0})$ were classified. In this paper we fix numbers $r, s, q, m, n \in \mathbb{N}$ such that $s \geq r \leq q$ and consider the bundle functor $F = T_{|\mathcal{FM}_{m,n}}^{(r,s,q)}$, where $T^{(r,s,q)} = (J^{r,s,q}(.,\mathbb{R}^{1,1})_0)^* : \mathcal{FM} \to \mathcal{FM}$ is the (introduced in [4]) bundle functor associating to every fibered manifold Y the vector bundle $(J^{r,s,q}(Y,\mathbb{R}^{1,1})_0)^*$ over Y. We prove that the set of all natural affinors on $T_{|\mathcal{FM}_{m,n}}^{(r,s,q)}$ is a 3-dimensional vector space over \mathbb{R} and we construct explicitly the basis of this vector space.

We also solve the similar problem with $T^{(r,s)} = (J^{r,s}(.,\mathbb{R})_0)^* : \mathcal{FM} \to \mathcal{FM}$ instead of $T^{(r,s,q)}$.

As an application of the obtained results we deduce that there are no natural connections on $T^{(r,s,q)}$ and $T^{(r,s)}$.

The above results extend [2].

Throughout this paper $r, s, q, m, n \in \mathbb{N}$ are numbers with $s \ge r \le q$.

The usual fiber coordinates on $\mathbb{R}^{m,n}$, the trivial bundle $\mathbb{R}^m \times \mathbb{R}^n$ over \mathbb{R}^m , are denoted by $x^1, \ldots, x^m, y^1, \ldots, y^n$.

All manifolds and maps are assumed to be of class C^{∞} .

1. The concept of classical r-jets can be generalized as follows. Let $Y \to M$ and $Z \to N$ be fibered manifolds. We recall that two \mathcal{FM} -morphisms $f, g: Y \to Z$ with base maps $\underline{f}, \underline{g}: M \to N$ determine the same (r, s, q)-jet $j_y^{r,s,q}f = j_y^{r,s,q}g$ at $y \in Y_x, x \in M$, if $j_y^r f = j_y^r g, j_y^s(f|Y_x) = j_y^s(g|Y_x)$ and $j_x^q \underline{f} = j_x^q \underline{g}$. The space of all (r, s, q)-jets of Y into Z is denoted by $J^{r,s,q}(Y, Z)$. The composition of \mathcal{FM} -morphisms induces the composition of (r, s, q)-jets ([3, p. 126]).

The space $T^{r,s,q*}Y = J^{r,s,q}(Y, \mathbb{R}^{1,1})_0$, $0 \in \mathbb{R}^2$, has an induced structure of a vector bundle over Y. Every \mathcal{FM} -morphism $f: Y \to Z$, f(y) = z, induces a linear map $\lambda(j_y^{r,s,q}f): T_z^{r,s,q*}Z \to T_y^{r,s,q*}Y$ by means of the jet composition. If we denote by $T^{(r,s,q)}Y$ the dual vector bundle of $T^{r,s,q*}Y$ and define $T^{(r,s,q)}f: T^{(r,s,q)}Y \to T^{(r,s,q)}Z$ by using the dual maps to $\lambda(j_y^{r,s,q}f)$, we obtain (similarly as in [3, p. 123]) a vector bundle functor $T^{(r,s,q)}$ on \mathcal{FM} , see [4].

2. In this section all natural transformations $T^{(r,s,q)} \to T^{(r,s,q)}$ over $\mathcal{FM}_{m,n}$ will be classified. This extends [6].

A natural transformation $T^{(r,s,q)} \to T^{(r,s,q)}$ over $\mathcal{FM}_{m,n}$ is a system of fibered maps $A: T^{(r,s,q)}Y \to T^{(r,s,q)}Y$ covering the identity id_Y for every $\mathcal{FM}_{m,n}$ -object Y satisfying $T^{(r,s,q)}f \circ A = A \circ T^{(r,s,q)}f$ for every local $\mathcal{FM}_{m,n}$ -map $f: Y \to \overline{Y}$.

Example 1. Let Y be an $\mathcal{FM}_{m,n}$ -object. For a fibered map $\gamma = (\gamma^1, \gamma^2) : Y \to \mathbb{R}^{1,1}$ we have fibered maps $\gamma^{\langle 1 \rangle} = (\gamma^1, 0), \gamma^{\langle 2 \rangle} = (0, \gamma^2), \gamma^{\langle 3 \rangle} = (0, \gamma^1) : Y \to \mathbb{R}^{1,1}$. Clearly, $j_y^{r,s,q} \gamma^{\langle 1 \rangle}, j_y^{r,s,q} \gamma^{\langle 2 \rangle}, j_y^{r,s,q} \gamma^{\langle 3 \rangle}$ depend linearly on $j_y^{r,s,q} \gamma$ for $y \in Y$. Define fibered maps $Pr^{\langle 1 \rangle}, Pr^{\langle 2 \rangle}, Pr^{\langle 3 \rangle} : T^{(r,s,q)}Y \to T^{(r,s,q)}Y$ over id_Y by

$$\begin{split} \langle Pr^{\langle 1 \rangle}(\omega), j_y^{r,s,q} \gamma \rangle &= \langle \omega, j_y^{r,s,q} \gamma^{\langle 1 \rangle} \rangle, \\ \langle Pr^{\langle 2 \rangle}(\omega), j_y^{r,s,q} \gamma \rangle &= \langle \omega, j_y^{r,s,q} \gamma^{\langle 2 \rangle} \rangle, \\ \langle Pr^{\langle 3 \rangle}(\omega), j_y^{r,s,q} \gamma \rangle &= \langle \omega, j_y^{r,s,q} \gamma^{\langle 3 \rangle} \rangle, \end{split}$$

 $\omega \in T_y^{(r,s,q)}Y, y \in Y, \gamma = (\gamma_1, \gamma_2) : Y \to \mathbb{R}^{1,1}$ is fibered, $\gamma(y) = 0$. The families $Pr^{\langle 1 \rangle}, Pr^{\langle 2 \rangle}, Pr^{\langle 3 \rangle} : T^{(r,s,q)} \to T^{(r,s,q)}$ are natural transformations over $\mathcal{FM}_{m,n}$.

Proposition 1. Every natural transformation $A : T^{(r,s,q)} \to T^{(r,s,q)}$ over $\mathcal{FM}_{m,n}$ is a linear combination of $Pr^{\langle 1 \rangle}$, $Pr^{\langle 2 \rangle}$ and $Pr^{\langle 3 \rangle}$.

PROOF: The elements $j_0^{r,s,q}(x^{\alpha},0)$ and $j_0^{r,s,q}(0,x^{\beta}y^{\delta})$ for multiindices α and (β,δ) from obvious sets form the basis of $J_0^{r,s,q}(\mathbb{R}^{m,n},\mathbb{R}^{1,1})_0$.

By the fibered version of the rank theorem, $j_0^{r,s,q}(x^1, y^1)$ has dense orbit in $J_0^{r,s,q}(\mathbb{R}^{m,n}, \mathbb{R}^{1,1})_0$. Then (by the naturality) A is uniquely determined by the contractions $\langle A(\omega), j_0^{r,s,q}(x^1, y^1) \rangle$ for all $\omega \in T_0^{(r,s,q)}\mathbb{R}^{m,n}$. So, it suffices to deduce that $\langle A(\cdot), j_0^{r,s,q}(x^1, y^1) \rangle$: $T_0^{(r,s,q)}\mathbb{R}^{m,n} \to \mathbb{R}$ is a linear combination of $j_0^{r,s,q}(x^1,0), j_0^{r,s,q}(0,x^1), j_0^{r,s,q}(0,y^1)$: $T_0^{(r,s,q)}\mathbb{R}^{m,n} \to \mathbb{R}$, i.e. that the vector space of all A as above has dimension ≤ 3 .

By the naturality of A with respect to the homotheties $a_t = t \operatorname{id}_{\mathbb{R}^m \times \mathbb{R}^n} : \mathbb{R}^{m,n} \to \mathbb{R}^{m,n}$ for $t \neq 0$ and the homogeneous function theorem (see [3]), we deduce that $\langle A(\cdot), j_0^{r,s,q}(x^1, y^1) \rangle$ is a linear combination of $j_0^{r,s,q}(x^i, 0), j_0^{r,s,q}(0, x^i)$ and $j_0^{r,s,q}(0, y^j)$ for $i = 1, \ldots, m$ and $j = 1, \ldots, n$. Next, using the naturality of A with respect to the fibered maps $b_t = (x^1, tx^2, \ldots, tx^n, y^1, ty^2, \ldots, ty^n) : \mathbb{R}^{m,n} \to \mathbb{R}^{m,n}$ for $t \neq 0$ we finish the proof.

3. In this section all linear natural transformations $TT^{(r,s,q)} \to T^{(r,s,q)}$ over $\mathcal{FM}_{m,n}$ will be classified.

A natural transformation $TT^{(r,s,q)} \to T^{(r,s,q)}$ over $\mathcal{FM}_{m,n}$ is a system of fibered maps $B: TT^{(r,s,q)}Y \to T^{(r,s,q)}Y$ covering the identity id_Y for every $\mathcal{FM}_{m,n}$ -object Y satisfying $T^{(r,s,q)}f \circ B = B \circ TT^{(r,s,q)}f$ for every local $\mathcal{FM}_{m,n}$ diffeomorphism $f: Y \to \overline{Y}$. The linearity of $B: TT^{(r,s,q)} \to T^{(r,s,q)}$ means that the restriction and corestriction $B_{\omega}: T_{\omega}T^{(r,s,q)}Y \to T_yY$ of $B: TT^{(r,s,q)}Y \to$ $T^{(r,s,q)}Y$ is linear for any $\omega \in T_y^{(r,s,q)}Y, y \in Y$ and $Y \in \mathrm{obj}(\mathcal{FM}_{m,n})$.

Example 2. Given an $\mathcal{FM}_{m,n}$ -object Y let $B^{\langle 1 \rangle}, B^{\langle 2 \rangle} : TT^{(r,s,q)}Y \to T^{(r,s,q)}Y$ be fibered maps over id_Y such that

$$\langle B^{\langle 1 \rangle}(v), j_y^{r,s,q} \gamma \rangle = d_y \gamma^1(T\pi(v)), \langle B^{\langle 2 \rangle}(v), j_y^{r,s,q} \gamma \rangle = d_y \gamma^2(T\pi(v)),$$

 $v \in (TT^{(r,s,q)})_y Y, y \in Y, \gamma = (\gamma_1, \gamma_2) : Y \to \mathbb{R}^{1,1}$ is fibered, $\gamma(y) = 0$, where $\pi : T^{(r,s,q)}Y \to Y$ is the bundle projection, $T\pi : TT^{(r,s,q)}Y \to TY$ is its tangent map and $d_y\gamma_1 : T_yY \to \mathbb{R}$ is the differential of γ_1 at y. Then $B^{\langle 1 \rangle}, B^{\langle 2 \rangle} : TT^{(r,s,q)} \to T^{(r,s,q)}$ are linear natural transformations over $\mathcal{FM}_{m,n}$.

Proposition 2. Every linear natural transformation $B : TT^{(r,s,q)} \to T^{(r,s,q)}$ over $\mathcal{FM}_{m,n}$ is a linear combination of $B^{\langle 1 \rangle}$ and $B^{\langle 2 \rangle}$.

PROOF: We use the notations from the proof of Proposition 1. Let $(j_0^{r,s,q}(x^{\alpha},0))^*$, $(j_0^{r,s,q}(0,x^{\beta}y^{\delta}))^* \in T_0^{(r,s,q)}\mathbb{R}^{m,n}$ be the basis dual to the one of $J_0^{r,s,q}(\mathbb{R}^{m,n},\mathbb{R}^{1,1})_0$. Let

$$\begin{aligned} & \operatorname{pr}_{1}: \mathbb{R}^{m} \times \mathbb{R}^{n} \times T_{0}^{(r,s,q)} \mathbb{R}^{m,n} \times T_{0}^{(r,s,q)} \mathbb{R}^{m,n} \to \mathbb{R}^{m} \times \mathbb{R}^{n}, \\ & \operatorname{pr}_{2}: \mathbb{R}^{m} \times \mathbb{R}^{n} \times T_{0}^{(r,s,q)} \mathbb{R}^{m,n} \times T_{0}^{(r,s,q)} \mathbb{R}^{m,n} \to T_{0}^{(r,s,q)} \mathbb{R}^{m,n}, \\ & \operatorname{pr}_{3}: \mathbb{R}^{m} \times \mathbb{R}^{n} \times T_{0}^{(r,s,q)} \mathbb{R}^{m,n} \times T_{0}^{(r,s,q)} \mathbb{R}^{m,n} \to T_{0}^{(r,s,q)} \mathbb{R}^{m,n}, \end{aligned}$$

be the projections.

Similarly as in the proof of Proposition 1, B is uniquely determined by the contractions $\langle B(v), j_0^{r,s,q}(x^1, y^1) \rangle$ for all $v \in (TT^{(r,s,q)})_0 \mathbb{R}^{m,n} \tilde{=} \mathbb{R}^m \times \mathbb{R}^n \times T_0^{(r,s,q)} \mathbb{R}^{m,n} \times T_0^{(r,s,q)} \mathbb{R}^{m,n}$, where $\tilde{=}$ is the standard identification. So, it remains to deduce that

$$\langle B(\cdot), j_0^{r,s,q}(x^1, y^1) \rangle : \mathbb{R}^m \times \mathbb{R}^n \times T_0^{(r,s,q)} \mathbb{R}^{m,n} \times T_0^{(r,s,q)} \mathbb{R}^{m,n} \to \mathbb{R}^n$$

is a linear combination of $x^1 \circ \operatorname{pr}_1$ and $y^1 \circ \operatorname{pr}_1$.

Using similar arguments as in the proof of Proposition 1 (the naturality of B with respect to a_t and b_t and the homogeneous function theorem), we deduce that $\langle B(\cdot), j_0^{r,s,q}(x^1, y^1) \rangle$ is a linear combination of $x^1 \circ \operatorname{pr}_1$, $y^1 \circ \operatorname{pr}_1$, $j_0^{r,s,q}(x^1, 0) \circ \operatorname{pr}_2$, $j_0^{r,s,q}(0, x^1) \circ \operatorname{pr}_2$, $j_0^{r,s,q}(0, y^1) \circ \operatorname{pr}_2$, $j_0^{r,s,q}(x^1, 0) \circ \operatorname{pr}_3$, $j_0^{r,s,q}(0, x^1) \circ \operatorname{pr}_3$ and $j_0^{r,s,q}(0, y^1) \circ \operatorname{pr}_3$. Since B is linear, $\langle B(\cdot), j_0^{r,s,q}(x^1, y^1) \rangle$ is a linear combination of $x^1 \circ \operatorname{pr}_1$, $y^1 \circ \operatorname{pr}_1$, $j_0^{r,s,q}(x^1, 0) \circ \operatorname{pr}_3$, $j_0^{r,s,q}(0, x^1) \circ \operatorname{pr}_3$ and $j_0^{r,s,q}(0, y^1) \circ \operatorname{pr}_3$. Replacing B by $B - \lambda_1 B^{\langle 1 \rangle} - \lambda_2 B^{\langle 2 \rangle}$ we can assume that $\langle B(\cdot), j_0^{r,s,q}(x^1, y^1) \rangle$ is a linear combination of $j_0^{r,s,q}(x^1, 0) \circ \operatorname{pr}_3$, $j_0^{r,s,q}(0, x^1) \circ \operatorname{pr}_3$ and $j_0^{r,s,q}(0, y^1) \circ \operatorname{pr}_3$. (Then $\langle B(\partial_1^C_{|\omega}), j_0^{r,s,q}(x^1, y^1) \rangle = 0$ and $\langle B(\overline{\partial}_1^C_{|\omega}), j_0^{r,s,q}(x^1, y^1) \rangle = 0$ for any $\omega \in T_0^{(r,s,q)} \mathbb{R}^{m,n}$, where $\partial_1 = \frac{\partial}{\partial x_1}$, $\overline{\partial}_1 = \frac{\partial}{\partial y_1}$ and ()^C is the flow lift of projectable vector fields to $T^{(r,s,q)}$.) It remains to show

(1)
$$\langle B(0,0,\tilde{\omega}), j_0^{r,s,q}(x^1,y^1) \rangle = 0$$

for $\tilde{\omega} \in \{(j_0^{r,s,q}(x^1,0))^*, (j_0^{r,s,q}(0,x^1))^*, (j_0^{r,s,q}(0,y^1))^*\}$. We consider 3 cases.

(I) Assume
$$\tilde{\omega} = (j_0^{r,s,q}(x^1,0))^*$$
. For showing (1), we prove

$$0 = \langle A((\partial_1 + (x^1)^q \partial_1)_{|\omega}^C), j_0^{r,s,q}(x^1,y^1) \rangle$$

$$= \langle A(((x^1)^q \partial_1)_{|\omega}^C), j_0^{r,s,q}(x^1,y^1) \rangle$$

$$= \langle A(0,\omega,\tilde{\omega}+\ldots), j_0^{r,s,q}(x^1,y^1) \rangle$$

$$= \langle A(0,0,\tilde{\omega}), j_0^{r,s,q}(x^1,y^1) \rangle,$$

where $\omega = (j_0^{r,s,q}((x^1)^q, 0))^*$ and the dots is the linear combination of the elements $\overline{\omega}$ from the dual basis of $T_0^{(r,s,q)} \mathbb{R}^{m,n}$ with $\overline{\omega} \notin \{(j_0^{r,s,q}(x^1, 0))^*, (j_0^{r,s,q}(0, x^1))^*, (j_0^{r,s,q}(0, y^1))^*\}$.

The second equality of (2) is clear as $\langle B(\partial_1^C|_{\omega}), j_0^{r,s,q}(x^1,y^1)\rangle = 0$ and A is an affinor. The fourth equality of (2) is clear as $\langle B(\cdot), j_0^{r,s,q}(x^1,y^1)\rangle$ is a linear combination of $j_0^{r,s,q}(x^1,0) \circ \operatorname{pr}_3, j_0^{r,s,q}(0,x^1) \circ \operatorname{pr}_3$ and $j_0^{r,s,q}(0,y^1) \circ \operatorname{pr}_3$.

We can prove the first equality of (2) as follows. We consider for a moment ∂_1 and $\partial_1 + (x^1)^q \partial_1$ as the vector fields on \mathbb{R} . They have the same (q-1)-jets at $0 \in \mathbb{R}$. Then there exists a diffeomorphism $\psi : \mathbb{R} \to \mathbb{R}$ such that $j_0^q \psi = \mathrm{id}$ and $\psi_* \partial_1 = \partial_1 + (x^1)^q \partial_1$ near $0 \in \mathbb{R}$, see Lemma 42.4 in [3] (or [12]). Let $\varphi = \psi \times \mathrm{id}_{\mathbb{R}^{m-1}} \times \mathrm{id}_{\mathbb{R}^n}$. Then $\varphi : \mathbb{R}^{m,n} \to \mathbb{R}^{m,n}$ is an $\mathcal{FM}_{m,n}$ -morphism such that $j_0^{r,s,q} \varphi = \mathrm{id}$ and $\varphi_* \partial_1 = \partial_1 + (x^1)^q \partial_1$ near 0. Clearly, φ preserves $j_0^{r,s,q}(x^1, y^1)$ because of the jet argument. Then, using the naturality of A with respect to φ , from $\langle B(\partial_1^C|_{\omega}), j_0^{r,s,q}(x^1, y^1) \rangle = 0$ for any $\omega \in T_0^{(r,s,q)} \mathbb{R}^{m,n}$ it follows the first equality for any $\omega \in T_0^{(r,s,q)} \mathbb{R}^{m,n}$.

It remains to show the third equality of (2). Let φ_t be the flow of $(x^1)^q \partial_1$. Then

$$\begin{aligned} \langle ((x^1)^q \partial_1)_{|\omega}^C, j_0^{r,s,q}(x^1,0) \rangle &= \langle \frac{d}{dt}_{|t=0} T^{(r,s,q)}(\varphi_t)(\omega), j_0^{r,s,q}(x^1,0) \rangle \\ &= \langle \omega, j_0^{r,s,q}(\frac{d}{dt}_{|t=0}(x^1,0) \circ \varphi_t) \rangle \\ &= \langle \omega, j_0^{r,s,q}((x^1)^q,0) \rangle \\ &= 1 \end{aligned}$$

because of the definition of ω . Similarly $\langle ((x^1)^q \partial_1)_{|\omega}^C, j_0^{r,s,q}(0,x^1) \rangle = 0$ and $\langle ((x^1)^q \partial_1)_{|\omega}^C, j_0^{r,s,q}(0,x^1) \rangle = 0$. Then $((x^1)^q \partial_1)_{|\omega}^C = (j_0^{r,s,q}(x^1,0))^* + \dots$ under the isomorphism $V_{\omega}T^{(r,s,q)}\mathbb{R}^{m,n} = T_0^{(r,s,q)}\mathbb{R}^{m,n}$, where the dots stand for a linear combination of the elements $\overline{\omega}$ from the dual basis of $T_0^{(r,s,q)}\mathbb{R}^{m,n}$ with $\overline{\omega} \notin \{(j_0^{r,s,q}(x^1,0))^*, (j_0^{r,s,q}(0,x^1))^*, (j_0^{r,s,q}(0,y^1))^*\}$. It implies the third equality of (2).

W.M. Mikulski

(II) Assume $\tilde{\omega} = (j_0^{r,s,q}(0,x^1))^*$. For showing (1), we prove (2), where $\omega = (j_0^{r,s,q}(0,(x^1)^q))^*$ and the dots stand for a linear combination of the elements $\overline{\omega}$ from the dual basis of $T_0^{(r,s,q)} \mathbb{R}^{m,n}$ with $\overline{\omega} \notin \{(j_0^{r,s,q}(x^1,0))^*, (j_0^{r,s,q}(0,x^1))^*, (j_0^{r,s,q}(0,y^1))^*\}$.

The proof of the third equality of (2) is almost the same as in case (I) (we have $\langle ((x^1)^q \partial_1)_{|\omega}^C, j_0^{r,s,q}(x^1,0) \rangle = 0$, $\langle ((x^1)^q \partial_1)_{|\omega}^C, j_0^{r,s,q}(0,x^1) \rangle = 1$ and $\langle ((x^1)^q \partial_1)_{|\omega}^C, j_0^{r,s,q}(0,y^1) \rangle = 0$). The proofs of the other equalities of (2) are the same as in case (I).

(III) Assume $\tilde{\omega} = (j_0^{r,s,q}(0,y^1))^*$. For showing (1), it suffices to prove

$$(2)' \qquad 0 = \langle A((\overline{\partial}_1 + (y^1)^s \overline{\partial}_1)^C_{|\omega}), j_0^{r,s,q}(x^1, y^1) \rangle \\ = \langle A(((y^1)^s \overline{\partial}_1)^C_{|\omega}), j_0^{r,s,q}(x^1, y^1) \rangle \\ = \langle A(0, \omega, \tilde{\omega} + \dots), j_0^{r,s,q}(x^1, y^1) \rangle \\ = \langle A(0, 0, \tilde{\omega}), j_0^{r,s,q}(x^1, y^1) \rangle, \end{cases}$$

where $\omega = (j_0^{r,s,q}(0,(y^1)^s))^*$ and the dots stand for a linear combination of the elements $\overline{\omega}$ from the dual basis of $T_0^{(r,s,q)}\mathbb{R}^{m,n}$ with $\overline{\omega} \notin \{(j_0^{r,s,q}(x^1,0))^*, (j_0^{r,s,q}(0,x^1))^*, (j_0^{r,s,q}(0,y^1))^*\}$. The proof of (2)' is similar to that of (2) in case (II). We leave the details to the reader.

4. In this section we classify all natural transformation $TT^{(r,s,q)} \to T$ over $\mathcal{FM}_{m,n}$. (The definition is similar to the one from Section 2.)

Example 3. Given an $\mathcal{FM}_{m,n}$ -object Y, let $T\pi : TT^{(r,s,q)}Y \to TY$ be as in Section 3. Then $T\pi : TT^{(r,s,q)} \to T$ is a linear natural transformation over $\mathcal{FM}_{m,n}$.

Proposition 3. Every linear natural transformation $C : TT^{(r,s,q)} \to T$ over $\mathcal{FM}_{m,n}$ is a constant multiple of $T\pi$.

PROOF: Using C, we construct a linear natural transformation $\tilde{C}: TT^{(r,s,q)} \to T^{(r,s,q)}$ over $\mathcal{FM}_{m,n}$ as follows. For any $Y \in \operatorname{obj}(\mathcal{FM}_{m,n})$ we define a fibered map $\tilde{C}: TT^{(r,s,q)}Y \to T^{(r,s,q)}Y$ over id_Y by

$$\langle \tilde{C}(v), j_y^{r,s,q} \gamma \rangle = d_y \gamma_1(C(v)),$$

 $v \in (TT^{(r,s,q)})_y Y, y \in Y, \gamma = (\gamma_1, \gamma_2) : Y \to \mathbb{R}^{1,1}$ is fibered, $\gamma(y) = 0$.

Now, by Proposition 2, there exist numbers $\lambda_1, \lambda_2 \in \mathbb{R}$ such that

$$\langle \tilde{C}(v), j_y^{r,s,q} \gamma \rangle = \lambda_1 \cdot d_y \gamma_1(T\pi(v)) + \lambda_2 \cdot d_y \gamma_2(T\pi(v))$$

for any $v \in (TT^{(r,s,q)})_y Y$, $y \in Y$, $Y \in obj(\mathcal{FM}_{m,n})$ and any fibered map $\gamma = (\gamma_1, \gamma_2) : Y \to \mathbb{R}^{1,1}$ with $\gamma(y) = 0$. Then $\lambda_2 = 0$ and $C = \lambda_1 \cdot T\pi$.

5. In this section we prove the main result of this paper.

Example 4. For every $\mathcal{FM}_{m,n}$ -object Y let $\mathrm{Id} : TT^{(r,s,q)}Y \to TT^{(r,s,q)}Y$ be the identity map and let $\tilde{B}^{\langle 1 \rangle}, \tilde{B}^{\langle 2 \rangle} : TT^{(r,s,q)}Y \to TT^{(r,s,q)}Y$ be affinors on $T^{(r,s,q)}Y$ such that

$$\begin{split} \tilde{B}^{\langle 1 \rangle}(v) &= (\omega, B^{\langle 1 \rangle}(v)) \in T^{(r,s,q)}Y \times_Y T^{(r,s,q)}Y \tilde{=} VT^{(r,s,q)}Y \subset TT^{(r,s,q)}Y, \\ \tilde{B}^{\langle 2 \rangle}(v) &= (\omega, B^{\langle 2 \rangle}(v)) \in TT^{(r,s,q)}Y, \ v \in T_{\omega}T^{(r,s,q)}Y, \ \omega \in T^{(r,s,q)}Y, \end{split}$$

where $B^{\langle 1 \rangle}, B^{\langle 2 \rangle} : TT^{(r,s,q)}Y \to T^{(r,s,q)}Y$ are as in Section 3. Then $\mathrm{Id}, \tilde{B}^{\langle 1 \rangle}$ and $\tilde{B}^{\langle 2 \rangle}$ are natural affinors on $T^{(r,s,q)}_{|\mathcal{FM}_{m,n}}$.

Theorem 1. Every natural affinor D on $T^{(r,s,q)}_{|\mathcal{FM}_{m,n}|}$ is a linear combination of Id, $\tilde{B}^{\langle 1 \rangle}$ and $\tilde{B}^{\langle 2 \rangle}$.

PROOF: The family $T\pi \circ D : TT^{(r,s,q)}Y \to TY$ for $Y \in \operatorname{obj}(\mathcal{FM}_{m,n})$ is a linear natural transformation $TT^{(r,s,q)} \to T$ over $\mathcal{FM}_{m,n}$. Then, by Proposition 3, there exists the real number λ such that $T\pi \circ D = \lambda \cdot T\pi$. Then $D - \lambda \cdot \operatorname{Id} : TT^{(r,s,q)}Y \to VT^{(r,s,q)}Y$ for any $\mathcal{FM}_{m,n}$ -object Y. Let pr : $VT^{(r,s,q)}Y \cong T^{(r,s,q)}Y \times_Y T^{(r,s,q)}Y \to T^{(r,s,q)}Y$ be the projection onto second factor for any Y as above. Then the family $\operatorname{pr} \circ (D - \lambda \cdot \operatorname{Id}) : TT^{(r,s,q)}Y \to T^{(r,s,q)}Y$ for any Y as above is a linear natural transformation over $\mathcal{FM}_{m,n}$. Now, by Proposition 2, there exist the numbers $\mu_1, \mu_2 \in \mathbb{R}$ such that $\operatorname{pr} \circ (D - \lambda \cdot \operatorname{Id}) =$ $\mu_1 \cdot B^{\langle 1 \rangle} + \mu_2 \cdot B^{\langle 2 \rangle}$. Then $D = \lambda \cdot \operatorname{Id} + \mu_1 \cdot \tilde{B}^{\langle 1 \rangle} + \mu_2 \cdot \tilde{B}^{\langle 2 \rangle}$.

6. We have the following corollary of Theorem 1.

Corollary 1. There is no natural generalized connection on $T_{|\mathcal{FM}_{m,n}}^{(r,s,q)}$.

PROOF: Suppose that Γ is such a connection. By Theorem 1, there are numbers $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ such that $\Gamma = \lambda_1 \cdot \operatorname{Id} + \lambda_2 \cdot \tilde{B}^{\langle 1 \rangle} + \lambda_3 \cdot \tilde{B}^{\langle 2 \rangle}$. Let Y be an $\mathcal{FM}_{m,n}$ -object. Since $\operatorname{im}(\Gamma) = VT^{(r,s,q)}Y$ and $\operatorname{im}(\tilde{B}^{\langle 1 \rangle}) \subset VT^{(r,s,q)}Y$ and $\operatorname{im}(\tilde{B}^{\langle 2 \rangle}) \subset VT^{(r,s,q)}Y$, we get $\lambda_1 = 0$. It is easy to see that $VT^{(r,s,q)}Y \subset \ker(\tilde{B}^{\langle 1 \rangle})$ and $VT^{(r,s,q)}Y \subset \ker(\tilde{B}^{\langle 2 \rangle})$. Then $\Gamma \circ \Gamma = 0 \neq \Gamma$, a contradiction. \Box

7. We can solve similar problems with $T^{(r,s)} = (J^{r,s}(.,\mathbb{R})_0)^* : \mathcal{FM} \to \mathcal{FM}$ instead of $T^{(r,s,q)}$ as follows.

(i) Let $Y \to M$ be a fibered manifold and Q be a manifold. Two maps $f, g : Y \to Q$ determine the same (r, s)-jet $j_y^{r,s}f = j_y^{r,s}g$ at $y \in Y_x, x \in M$, if $j_y^r f = j_y^r g$, and $j_y^s(f|Y_x) = j_y^s(g|Y_x)$. The space of all (r, s)-jets of Y into Q is denoted by $J^{r,s}(Y,Q)$, see [3, p. 126].

The space $T^{r,s*}Y = J^{r,s}(Y, \mathbb{R})_0$ has an induced structure of a vector bundle over Y. Every \mathcal{FM} -morphism $h: Z \to Y$, h(z) = y, induces a linear map $\lambda(h)y, z: T_y^{r,s*}Y \to T_z^{r,s*}Z, j_y^{r,s}f \to j_z^{r,s}(f \circ h)$. If we denote by $T^{(r,s)}Y$ the dual vector bundle of $T^{r,s*}Y$ and define $T^{(r,s)}h: T^{(r,s,q)}Z \to T^{(r,s)}Y$ by using the dual maps to $\lambda(h)_{y,z}$, we obtain a vector bundle functor $T^{(r,s)}$ on \mathcal{FM} .

(ii) The family id : $T^{(r,s)}Y \to T^{(r,s)}Y$ for any $\mathcal{FM}_{m,n}$ -object Y is a natural transformation $T^{(r,s)} \to T^{(r,s)}$ over $\mathcal{FM}_{m,n}$.

Proposition 1'. Every natural transformation $A: T^{(r,s)} \to T^{(r,s)}$ over $\mathcal{FM}_{m,n}$ is a constant multiple of the identity natural transformation.

PROOF: The proof is quite similar to the proof of Proposition 1.

(iii) For every $\mathcal{FM}_{m,n}$ -object Y let $B^{\langle\rangle} : TT^{(r,s)}Y \to T^{(r,s)}Y$ be a fibered map over id_Y such that $\langle B^{\langle\rangle}(v), j_y^{r,s}\gamma \rangle = d_y\gamma(T\pi(v)), v \in (TT^{(r,s)})_yY, y \in Y,$ $\gamma : Y \to \mathbb{R}, \gamma(y) = 0$, where $\pi : T^{(r,s)}Y \to Y$ is the bundle projection and $T\pi : TT^{(r,s)}Y \to TY$ is its tangent map. Then $B^{\langle\rangle} : TT^{(r,s)} \to T^{(r,s)}$ is a linear natural transformation over $\mathcal{FM}_{m,n}$.

Proposition 2'. Every linear natural transformation $B : TT^{(r,s)} \to T^{(r,s)}$ over $\mathcal{FM}_{m,n}$ is a constant multiple of $B^{\langle\rangle}$.

PROOF: The proof is quite similar to the proof of Proposition 2. \Box

(iv) Given an $\mathcal{FM}_{m,n}$ -object Y let $T\pi : TT^{(r,s)}Y \to TY$ be as in (iii). Then $T\pi : TT^{(r,s)} \to T$ is a linear natural transformation over $\mathcal{FM}_{m,n}$.

Proposition 3'. Every linear natural transformation $C : TT^{(r,s)} \to T$ over $\mathcal{FM}_{m,n}$ is a constant multiple of $T\pi$.

PROOF: The proof is quite similar to the proof of Proposition 3.

(v) For every $\mathcal{FM}_{m,n}$ -object Y, let $\mathrm{Id}: TT^{(r,s)}Y \to TT^{(r,s)}Y$ be the identity map and let $\tilde{B}^{\langle\rangle}: TT^{(r,s)}Y \to TT^{(r,s)}Y$ be an affinor on $T^{(r,s)}Y$ such that $\tilde{B}^{\langle\rangle}(v) = (\omega, B^{\langle\rangle}(v)) \in T^{(r,s)}Y \times_Y T^{(r,s)}Y \cong VT^{(r,s)}Y \subset TT^{(r,s)}Y, v \in T_{\omega}T^{(r,s)}Y, \omega \in T^{(r,s)}Y$, where $B^{\langle\rangle}: TT^{(r,s)}Y \to T^{(r,s)}Y$ is as in Proposition 1'. Then Id and $\tilde{B}^{\langle\rangle}$ are natural affinors on $T^{(r,s)}_{|\mathcal{FM}_{m,n}}$.

 \square

Theorem 1'. Every natural affinor D on $T^{(r,s)}_{|\mathcal{FM}_{m,n}|}$ is a linear combination of Id and $\tilde{B}^{\langle\rangle}$.

PROOF: The proof is quite similar to the proof of Theorem 1.

(vi) We have the following corollary of Theorem 1'.

Corollary 1'. There is no natural generalized connection on $T^{(r,s)}_{|\mathcal{FM}_{m,n}}$.

References

- Doupovec M., Kolář I., Natural affinors on time-dependent Weil bundles, Arch. Math. Brno 27 (1991), 205–209.
- [2] Gancarzewicz J., Kolář I., Natural affinors on the extended r-th order tangent bundles, Suppl. Rendiconti Circolo Mat. Palermo 30 (1993), 95–100.
- [3] Kolář I., Michor P. W., Slovák J., Natural operations in differential geometry, Springer-Verlag, Berlin, 1993.
- [4] Kolář I., Mikulski W.M., Contact elements on fibered manifolds, to appear in Czech Math. J.
- [5] Kolář I., Modugno M., Torsions of connections on some natural bundles, Differential Geom. Appl. 2 (1992), 1–16.
- Kolář I., Vosmanská G., Natural transformations of higher order tangent bundles and jet spaces, Čas. pěst. mat. 114 (1989), 181–185.
- [7] Kurek J., Natural affinors on higher order cotangent bundles, Arch. Math. Brno 28 (1992), 175–180.
- [8] Mikulski W.M., Natural affinors on r-jet prolongation of the tangent bundles, Arch. Math. Brno 34 (2) (1998), 321–328.
- [9] Mikulski W.M., Natural affinors on $(J^{r}T^{*})^{*}$, Arch. Math. Brno 36 (4) (2000), 261–267.
- [10] Mikulski W.M., The natural affinors on $\otimes^k T^{(r)}$, Note di Matematica **19 (2)** (1999), 269–274.
- [11] Mikulski W.M., The natural affinors on generalized higher order tangent bundles, to appear.
- [12] Zajtz A., On the order of natural operators and liftings, Ann. Polon. Math. 49 (1988), 169–178.

INSTITUTE OF MATHEMATICS, JAGIELLONIAN UNIVERSITY, REYMONTA 4, KRAKÓW, POLAND *E-mail*: mikulski@im.uj.edu.pl

(Received March 27, 2001)