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1. Introduction

This work is motivated by properties of the family ofN -permitted sets. A set E
is an N-set if there exists a trigonometric series

∞
∑

n=1

ρn sinnπx

absolutely converging on E with
∑∞

n=1 ρn = ∞, ρn ≥ 0. It is a well known fact
that the family N of N-sets is not an ideal and this is the reason to look for
conditions when the union of two N-sets is an N-set and, in particular, the reason
for the study of sets which can be adjoined to any N-set so that the resulting
set is again an N-set. Such sets are called N -permitted sets. This notion was
introduced by Arbault.

The classical Arbault-Erdős Theorem (see [1]) says that every countable set is
an N -permitted set. It is also well known an (unsuccessful) Arbault’s attempt to
construct a perfect N -permitted set:

Let G be the set of convergence of a series
∑∞

n=1 ρn| sinnπx| with
∑∞

n=1 ρn =
∞. Let us find a condition posed on a perfect nowhere dense set P so that the
union G ∪ P is again an N-set.

Let sn =
∑n

k=1 ρk. Let {ηn}∞n=1, {εn}∞n=1 be decreasing sequences of positive
reals converging to 0. Let qn be the least natural number such that P can be
covered by qn intervals of length ηn. Let an

i , i = 1, . . . , qn, be the left end-points
of these intervals. By Dirichlet-Minkowski Theorem there are natural numbers
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1 ≤ λn ≤ (1/εn)qn such that | sinλnnπα
n
i | < πεn. Moreover, if we assume that

| sinλnnπηn| < πεn then since for every y ∈ P , |y−αn
i | ≤ ηn for some i, we have

| sinλnnπy| < 2πεn for every y ∈ P .
Let us determine the values of ηn, εn, qn, ρ′n so that

∑∞
n=1 ρ

′
n = ∞, and

∑∞
n=1 ρ

′
n| sinλnnπx| < ∞ for x ∈ G ∪ P . The convergence on the set G will be

ensured by the condition ρ′nλn ≤ ρn. To fulfill this let us set ρ′n = ρnε
qn
n . The

convergence on the set P will be ensured by the conditions
∑∞

n=1 ρ
′
nεn <∞ and

| sinλnnπηn| ≤ πεn which follow from next two conditions

(1.1)

∞
∑

n=1

ρnε
qn+1
n <∞ and nηn ≤ ε

qn+1
n ,

since then | sinλnnπηn| ≤ λnπε
qn+1
n ≤ πεn. The divergence

∑∞
n=1 ρ

′
n = ∞ is

now expressed by

(1.2)

∞
∑

n=1

ρnε
qn
n =∞.

Let us set ε
qn
n = 1/sn, nηn = 1/s2

n. This fulfills the second part of (1.1), and
conditions (1.1) and (1.2) are expressed by

(1.3)
∞
∑

n=1

ρn

s
1+1/qn
n

<∞ and
∞
∑

n=1

ρn

sn
=∞.

Now we use the fact that if f(n) is a monotone function and
∑∞

n=1 ρn = ∞,
then

∑∞
n=1 1/f(n) converges if and only if

∑∞
n=1 ρn/f(sn) converges. Therefore

the second series diverges. The first one converges if we set, for example, qn ≤
(log sn)/ log(log sn)2.

Arbault [1] used these arguments to claim that the set P is an N -permitted set.
However, these arguments are not enough to derive this fact because the choice of
the set P (namely ηn and qn) depends on ρn. Although we are able to choose ηn
independently on ρn by taking nηn = 1/n2, since we can always assume that
sn ≤ n, this is not possible for qn. Arbault in fact took qn = (log n)/ log(log n)2

which does not depend on ρn but in this case Bary [4, Chapter XIII, §8] showed
that the first series in (1.3) need not converge.

So far it is not known whether there exists a perfect N -permitted set and even
whether there exists an N -permitted set of the size of the continuum.

We shall need the following small uncountable cardinals:
m is the least cardinal κ for which Martin’s Axiom MAκ fails;
p is the least size of a family F ⊆ [ω]ω whose every finite subfamily has an

infinite intersection but F has no infinite pseudo-intersection (i.e., there is no
infinite set A ∈ [ω]ω such that A−X is finite for every X ∈ F);
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t is the least size of a tower, i.e., a family F ⊆ [ω]ω well-ordered by ⊇∗ without
an infinite pseudo-intersection;

h is the minimal cardinal κ such that the algebra P(ω)/fin is not κ-distributive;
s is the least size of a splitting family F ⊆ [ω]ω, i.e., for every A ∈ [ω]ω there

exists B ∈ F such that |A−B| = |A ∩B| = ω;

b is the cardinality of an unbounded subset of ωω ordered by f ≤∗ g if and
only if f(n) ≤ g(n) for all but finitely many n;

d is the least cardinality of a cofinal subset of ωω ordered by ≤∗.

It is well known that m ≤ p ≤ t ≤ h ≤ min{s, b}.

If I is an ideal of sets of reals we define:

add(I) is the minimal size of a set A ⊆ I such that
⋃

A /∈ I;

non(I) is the minimal size of a set A ⊆ R such that A /∈ I;

cov(I) is the minimal size of a set A ⊆ I such that
⋃

A = R;
cof(I) is the minimal size of a cofinal subset A of I ordered by ⊆.

The letters L andM denote the σ-ideal of Lebesgue measure zero sets and the
σ-ideal of meager sets on the real line, respectively. We identify the real line R
with the interval [0, 1].

2. Permitted sets

In this work we deal with permitted sets for these families of trigonometric thin
sets: A, pD, N , N0 (the family of A-sets, the family of pseudo-Dirichlet sets, the
family of N-sets, and the family of N0-sets, respectively). They are all included
in L and M, i.e., in the σ-ideal of Lebesgue measure zero sets and the σ-ideal of
meager sets on the real line.

Let us recall these notions. Let E be a set of reals.

(1) E is a pseudo-Dirichlet set (pD-set) if there exists an increasing sequence of
integers {nk}

∞
k=0 such that the sequence {sinnkπx}

∞
k=0 converges quasi-

normally to 0, i.e., there exists a decreasing sequence of positive reals
{εn}∞n=0 converging to 0 such that (∀x ∈ E)(∀∞k) | sinnkπx| < εk.

(2) E is an N0-set if there exists an increasing sequence of integers {nk}
∞
k=0

such that
∑∞

k=0 | sinnkπx| <∞ for x ∈ E.
(3) E is an A-set if there exists an increasing sequence of integers {nk}

∞
k=0

such that the sequence {sinnkπx}
∞
k=0 converges pointwise to 0 on E.

(4) E is an N-set if there exists a sequence of nonnegative reals ρn such that
∑∞

n=0 ρn =∞ and
∑∞

n=0 ρn| sinnπx| <∞ for x ∈ E.

For all basic facts and definitions we refer to the expository paper [9].

In general the words family of thin sets mean any family of sets of reals F such
that (i) F contains all singletons, (ii) with every set, F contains all its subsets,
and (iii) F does not contain an interval of reals.
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Let F be a family of thin sets. A set A of reals is F -permitted if A ∪ B ∈ F
for every B ∈ F . For any family F of thin sets or reals let us denote

Perm(F) = {A ⊆ R : (∀B ∈ F)A ∪B ∈ F}.

Each of the families F = pD, N0, N , A has this property:

If A ∈ F , then also the group generated by A belongs to F .

It follows that Perm(F) has the same property. Moreover, a vector space over Q
generated by an N-set is an N-set (see [1], page 267). Therefore, a vector space
over Q generated by an N -permitted set is an N -permitted set.

A well known Marcinkiewicz’s Theorem says that there are two perfect Dirichlet
sets A, B such that A+B is the real line R and hence A∪B /∈ A and A∪B /∈ N .
Therefore none of the considered families pD, N0, N , A, is an ideal and they are
all families of thin sets in the above sense.

The study of permitted sets was started by Arbault in [1] and independently by
Erdős who proved that every countable set isN -permitted. Bukovská in [5] proved
that every set of cardinality < p is pD-permitted. Bartoszyński and Scheepers [3]
improved this by showing that every set of cardinality < h is pD-permitted and
N0-permitted. Bukovský, Kholshchevnikova, and Repický in [9] proved that even
every set of size < min{s, b} is pD-permitted and N0-permitted. Bukovský and
Bukovská in [7], and Kholshchevnikova in [15] and [16] proved that every set of
size < p is N -permitted and every set of size < m is A-permitted. Also in the
case of N and A, Bartoszyński and Scheepers obtained improvements and showed
that every set of size < t is N -permitted and every set of size < s is A-permitted.

An open cover U of a set A is an ω-cover if for every finite set B ⊆ A there
is U ∈ U such that B ⊆ U . A set A is a γ-set if for every ω-cover U of A there
is a sequence {Un}∞n=1 of sets from U such that A ⊆

⋃∞
m=1

⋂∞
n=m Un. It is well

known that the minimal cardinality of a set which is not a γ-set is p.
Galvin and Miller [11] assuming p = c proved the existence of a γ-set of size

continuum. Bukovský, Kholshchevnikova, and Repický [9] proved that every γ-set
is permitted for the families pD, N0, N , and A, proving so the consistency of the
existence of permitted sets of the size of the continuum.

Unfortunately, it is consistent with ZFC that every γ-set is countable, and so
the question of the existence of large permitted sets in ZFC remained open.

3. Properties of permitted sets

The gap in Arbault’s proof probably cannot be corrected. The natural question
is how large N -permitted sets can be. We describe a σ-ideal of sets which are
F -permitted for all families pD, N0, N , and A. This σ-ideal helps to improve
known lower estimates for the minimal size of a non-permitted set.
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Definition 3.1. Let A be a set of reals.

(i) A has perfect measure zero if for every sequence of positive reals {εn}∞n=1
there are an increasing sequence of integers {nk}

∞
k=0 and a sequence of

finite families of intervals {In}∞n=1 such that
(1) |In| ≤ n,
(2) |I| < εn for every I ∈ In, and
(3) A ⊆

⋃

m

⋂

k>m

⋃

Ink
.

(ii) A has uniformly measure zero if for every sequence of positive reals
{εn}∞n=1 there is a sequence of finite families of intervals {In}∞n=1 such
that the above conditions (1)–(3) are satisfied for nk = k.

(iii) A has strong measure zero if for every sequence of positive reals {εn}∞n=1
there exists a sequence of intervals {In}∞n=1 such that A ⊆

⋃∞
n=1 In and

|In| < εn for each n ≥ 1.

Let Lu.m.z., Lp.m.z., and Ls.m.z. denote the families of sets having uniform
measure zero, perfect measure zero, and strong measure zero, respectively. Let us
recall the main results of [19] and [20]:

Theorem 3.2.

(i) Every γ-set has perfect measure zero and Lu.m.z. ⊆ Lp.m.z. ⊆ Ls.m.z..

(ii) add(Lp.m.z.) ≥ min{h, add(L)} and add(Lu.m.z.) ≥ add(L).
(iii) The group generated by a set of uniform measure zero (perfect measure

zero) is a set of uniform measure zero (perfect measure zero).
(iv) Every set of reals of perfect measure zero is F -permitted for F = pD, N0,

N , A. �

Moreover, each of the following inequalities is consistent with ZFC: Lu.m.z. $
Lp.m.z., Lp.m.z. $ Ls.m.z., Ls.m.z. * Perm(F), F = pD, N0, N , A (see the
discussion in [19]).

Notice that condition (iv) of Theorem 3.2 generalizes Theorems 13.3 and 13.4
in [9] which say that γ-sets are permitted for pD, N0, N , A.

All families Perm(F) are closed under group generation. From this point of
view Theorem 3.2(iii) is not surprising.

The following cardinals are connected with perfect measure zero and uniform
measure zero:

f = min{|A| : A ⊆ ωω ∧A is bounded ∧

(∀ϕ ∈
∞
∏

n=0
[ω]≤n)(∀X ∈ [ω]ω)(∃f ∈ A)(∃∞n ∈ X) f(n) /∈ ϕ(n)},

k = min{|A| : A ⊆ ωω ∧A is bounded ∧

(∀ϕ ∈
∞
∏

n=0
[ω]≤n)(∃f ∈ A)(∃∞n) f(n) /∈ ϕ(n)}.
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It is immediate from the definitions that k ≤ f, non(Lp.m.z.) = f and
non(Lu.m.z.) = k. Consequently, every set of cardinality < f is F -permitted for
F = pD, N0, N , A. Since p = non(γ-set), by condition (i) of Theorem 3.2, we
obtain p ≤ f.

In connections with trigonometric thin sets, k and f were both studied by Kada
and Kamo [13], the cardinal f was introduced independently by C. Laflamme [17]
(see [8]).

For the sake of completeness let us mention also the following Miller’s charac-
terization (see [18]) of the least cardinality of a set which has not strong measure
zero:

non(Ls.m.z.) = min{|A| : A ⊆ ωω ∧A is bounded ∧

(∀ g ∈ ωω)(∃f ∈ A)(∀∞n) f(n) 6= g(n)}.

Let us note that the cardinals k and f are not explicitly mentioned in [19] and
although they were originally a motivation for introduction of the notions “perfect
measure zero” and “uniform measure zero,” the results of the paper were obtained
independently of the results of [17] and [13].

In connection with Bartoszyński and Scheeper’s result saying that every set of
size < s is A-permitted, we introduce the following definition.

Definition 3.3. A set A of reals is an s-set if for every sequence of open sets
{Un : n ∈ ω} there is an increasing sequence of integers {nk : k ∈ ω} such that
A ⊆

⋃

m

⋂

k≥m Unk
∪

⋃

m

⋂

k≥m R \ Unk
.

We can easily observe that s is the minimal size of a set which is not an s-set.

Theorem 3.4. Every s-set is A-permitted. �

Theorem 3.2 and the inequality t ≤ non(PermN ) proved by Bartoszyński and
Scheepers, have the following generalization, proved in [20]. For a cardinal number
κ let Lκ

p.m.z. be the system of sets which are the union of less then κ sets of perfect
measure zero.

Theorem 3.5. Lt
p.m.z. ⊆ Perm(F) for F = pD, N0, N , A. �

Although it is well known that

pD ⊆ N0 ⊆ N , N0 ⊆ A,

no inclusions (and even no relationship) between Perm(F)’s are known. Every-
thing we know about cardinal characterizations of F -permitted sets is expressed
by the following diagram (here → means ≤ and L0 is the σ-ideal generated by
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closed sets of Lebesgue measure zero):

non(L0) −−−−−−−−−−−−−−−−−−−−−−−−−−−→ non(L ∩M)
x





x





non(N ) ←−−−− non(N0)← non(pD) −−−−→ non(A)← non(N0)
x





x





x





x





non(PermN ) non(PermN0) non(Perm pD) non(PermA)
x





տ
��

ր
��

x





f −−−−→ f ·min{s, b} −−−−→ f · s
x





x





x





t −−−−→ min{s, b} −−−−→ s

Notice that for every set A ∈ F , the family FA = {A ∪ B : B ∈ Perm(F)} is
a directed subset of F . It follows that if the union of every countable directed
subset of F belongs to F then Perm(F) is a σ-ideal. This reminds the following
result of Bukovská in [5]: The union of every directed family of Dirichlet sets of
size < p is a pseudo-Dirichlet set. On the other hand S. Kahane in [14] proved that
pD, N0, and N are not closed on countable increasing unions. More exactly, for
α < ω1 let Fα↑ denote the αth iteration of the operation “the set of all increasing
unions of ω-sequences of sets.” Then for every α < β there exists an Fσδ set in
Dβ↑ which is not in Nα↑.

This shows that the reduction of the problem of σ-additivity of permittedness
to directed sets does not lead to a trivial solution.

Bukovský in [8] considers arbitrary functions instead of sin function in the
definition of trigonometric thin set (for the sake of completeness let us say that
this research was started by Bukovská in [6]). Instead of real line he considers
torus T = R/Z. The above results allow some generalizations. Let f : T→ [0,∞)
be a continuous function, f(0) = 0, and f(x−y) ≤ f(x)+f(y) for x, y ∈ T. Then
if in the definition of trigonometric thin sets the functions sinnπx are replaced by
f(nx), then Theorem 3.2(iv) remains true for modified pD, N0, and A. In the case
of N an additional hypothesis on the continuity of f is needed: |f(x) − f(y)| <
ψ(δ) whenever |x−y| < δ where ψ : (0, 1)→ (0,∞) is any nondecreasing function
such that limx→0+ ψ(x) = 0 and

∑∞
n=1 n

−1ψ(n−a) <∞ for each a > 0.

4. Criteria of permittedness

Let us mention that each of the mentioned results about permitted sets uses
one of the following criteria for a set A ⊆ R to be F -permitted:
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The case F = pD.

(1d) Every increasing sequence of integers {ml}
∞
l=0 has a subsequence

{mln}
∞
n=0 such that both sequences {sinmlnπx}

∞
n=0 and {cosmlnπx}

∞
n=0

converge quasinormally on A (not necessarily to 0).
(2d) For every increasing sequence of integers {ml}

∞
l=0 there are increasing

sequences of integers l′n < ln ≤ l′n+1, n ∈ ω, such that {sin(mln −
ml′n

)πx}∞n=0 converges quasinormally to 0 on A.

The case F = A.

(1a) Every increasing sequence of integers {ml}
∞
l=0 has a subsequence

{mln}
∞
n=0 such that both sequences {sinmlnπx}

∞
n=0 and {cosmlnπx}

∞
n=0

converge pointwise on A (not necessarily to 0).
(2a) For every increasing sequence of integers {ml}

∞
l=0 there are increasing

sequences of integers l′n < ln ≤ l′n+1, n ∈ ω, such that {sin(mln −
ml′n

)πx}∞n=0 converges pointwise to 0 on A.

The case F = N0.

(n0) For every increasing sequence of integers {ml}
∞
l=0 there are increasing

sequences of integers l′n < ln ≤ l′n+1, n ∈ ω, such that for all x ∈ A,
∑∞

n=0 | sin(mln −ml′n
)πx| <∞.

The case F = N .

(1n) For every sequence of nonnegative reals an such that
∑∞

n=0 an = ∞ and
for every increasing sequence of integers {nk}

∞
k=0 such that nk+1 > g(nk)

where g(n) = min{m :
∑m

k=n ak/sk ≥ 1} there exist integers 0 < λn ≤ sn
for each k and for each nk ≤ n ≤ g(nk) such that for every x ∈ A,
∑∞

k=0

∑g(nk)
n=nk

(an/sn)| sinλnnπx| <∞.

(2n) For every sequence of nonnegative reals an such that
∑∞

n=0 an = ∞ and
for every increasing sequence of integers {nk}

∞
k=0 such that nk+1 > g(nk)

where g(n) = min{m :
∑m

k=n ak/sk ≥ 1} there exist integers 0 < λn ≤ sn
for each k and for each nk ≤ n ≤ g(nk), there exists an infinite set b ⊆ ω

such that for every x ∈ A,
∑

k∈b

∑g(nk)
n=nk

(an/sn)| sinλnnπx| <∞.

(3n) For every sequence of nonnegative reals an such that
∑∞

n=0 an =∞ there
exists an infinite set b ⊆ ω and there exist integers 0 < λn ≤ sn, n ∈ b such
that

∑

n∈b an/sn = ∞ and for every x ∈ A,
∑

n∈b(an/sn)| sinλnnπx| <
∞.

(4n) For every series
∑∞

n=0 an| sinnπx| with
∑∞

n=0 an = ∞ there exist reals
bn ≥ 0 and natural numbers λn → ∞ (for n with bn > 0) such that
bn| sinλnπx| ≤ an| sinnπx| for all n,

∑∞
n=0 bn| sinλnπx| < ∞ for x ∈ A,

and
∑∞

n=0 bn =∞.

Arbault calls the sets satisfying condition (4n) N -permitted sets in the restricted
sense and proves that the family of such sets is a σ-ideal.
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The following implications hold true between these conditions:

(1a) −−−−→ (2a) (1n) −−−−→ (2n) −−−−→ (3n) −−−−→ (4n)
x





x





(1d) −−−−→ (2d) −−−−→ (n0)

Theorem 3.2(iv), Theorem 3.4, Theorem 3.5, and all mentioned cardinality results
on permitted sets in fact say the following:

Theorem 4.1.

(i) Every set of size < min{s, b} satisfies condition (1d) ([9, Corollary 12.3]).
More generally, every s-set which is a wQN-set satisfies condition (2d) ([9,
Theorem 12.2] and [19, Theorem 3.1]).

(ii) Every set of size < s satisfies condition (1a) ([9, Theorem 12.2(2)]). More
generally, every s-set satisfies condition (1a) ([19, Theorem 3.1]).

(iii) Every set of perfect measure zero satisfies condition (2d) ([19, Theo-
rem 2.2]).

(iv) Every set of size < t satisfies condition (3n) ([3, Theorem 1(1)]).
(v) Every set of perfect measure zero satisfies condition (1n) ([19, Theo-

rem 2.1]).
(vi) Every union of < t sets of perfect measure zero satisfies condition (2n)

([20, Proposition 2.4]).
(vii) Every union of < t sets of perfect measure zero satisfies condition (2d)

([20, Proposition 3.2]). �

Notice that if A is such that for every increasing sequence {ml}
∞
l=0 there is

a subsequence {mln}
∞
n=0 such that sinmlnπx converges (either quasinormally,

pointwise, or the series of these terms converges absolutely) on a set A, then
A ⊆ Z and so this condition is not a reasonable criterion.

5. Uncountable sets of perfect measure zero

By Theorem 3.2(i), every set of perfect measure zero has strong measure zero
and hence it is not possible to construct an uncountable set of perfect measure
zero in ZFC. But under Martin’s Axiom, especially under the assumption p = c,
there is a γ-set of size continuum and every γ-set is a set of perfect measure zero.
We shall show that a slightly weaker assumption is enough to derive the existence
of an uncountable set of perfect measure zero.

Our example is easier to formulate in the Cantor space ω2 or in the homeomor-
phic space P(ω) with the topology inherited from ω2 via characteristic functions.
Therefore we identify subsets of ω with their characteristic functions and hence
we adopt this notation: For x ⊆ ω and n ∈ ω, [x↾n] = {y ⊆ ω : x ∩ n = y ∩ n} is
a basic clopen set in P(ω).
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So let us translate the definition of a set of perfect measure zero in this space.
We apply the natural measure preserving reduction g : P(ω)→ [0, 1] defined by

(5.1) g(x) =
∑

k∈x 2−k−1.

We say that a set A ⊆ P(ω) is a set of perfect measure zero if for every
increasing function f : ω → ω there exist sets Sn ∈ [P(f(n))]n, n ∈ ω, and
an increasing sequence of integers {nk}

∞
k=0 such that A ⊆

⋃

m

⋂

k≥m[Snk
, f(nk)]

where [S,m] denotes the set
⋃

s∈S [s↾m].
It is quite easy to see that A ⊆ P(ω) is a set of perfect measure zero if and

only if g(A) ⊆ [0, 1] is a set of perfect measure zero.

Theorem 5.1. If t = b, then there exists a set of perfect measure zero of size b.

Proof: For an infinite set x ⊆ ω let ex : ω → ω be the increasing enumeration
function of the set x, i.e., rng ex = x. The proof of the theorem is given by the
following lemma which is based on the same ideas as the proof of Theorem 5.1
in [12]. �

Lemma 5.2. The family of infinite sets A = {xα : α < b} is a set of perfect
measure zero whenever this family satisfies the next two conditions:

(i) α < β < b implies xβ ⊆
∗ xα, and

(ii) {exα : α < b} is an unbounded family of functions.

Proof: Let f : ω → ω be an arbitrary increasing function. We show that there
are an increasing sequence of integers {nk}

∞
k=0 and Snk

∈ [P(f(nk))]nk such that
A ⊆

⋃

m

⋂

k≥m[Snk
, f(nk)].

Let us define by induction m0 = 0, mn+1 = f(2mn+1). Due to condition (ii)
there exists α < b such that [mn,mn+1) ∩ xα = ∅ for infinitely many n ∈ ω. Let
{ij}

∞
j=0 be the increasing enumeration of all n with [mn,mn+1)∩xα = ∅. Due to

condition (i), for every β ≥ α for all but finitely many j ∈ ω, [mij ,mij+1)∩xβ = ∅
and therefore

{xβ : β ≥ α} ⊆
⋃

m

⋂

j>m

[P(mij ), f(2
mij

+1
)].

Since α < t, the set {xβ : β < α} is a set of perfect measure zero. Therefore there

exist S′
j ∈ [P(f(2

mij
+1

))]j for j ∈ ω and an infinite set a ⊆ ω such that

{xβ : β < α} ⊆
⋃

m

⋂

j∈a\m

[S′
j , f(2

mij
+1

)].

Let us set S
2

mij
+1 = S′

j ∪ P(mij ). Then |S
2

mij
+1 | ≤ j + 2

mij ≤ 2
mij

+1
. Let

{nk}
∞
k=0 be the increasing enumeration of the set {2

mij
+1

: j ∈ a}. Then nk
and Snk

are as promised and so A is a set of perfect measure zero. �
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Notice that the set A ∪ [ω]<ω for the set A from the above proof is a wQN-set
which is b-concentrated on the countable set [ω]<ω (see [10], Theorem 7.1(ii)).

It is said that a set of reals A ⊆ R is strongly meager if for every set G of
Lebesgue measure zero A+ G 6= R. Again the function g : P(ω)→ [0, 1] defined
by (5.1) enables to equivalently define this notion in the space P(ω) with the
group operation a⊕ b = (a− b)∪ (b− a). T. Bartoszyński and I. Rec law [2] under
the assumption p = c have constructed a γ-set in ω2 of size c which is not strongly
meager. A similar construction works also for sets of perfect measure zero under
a somewhat weaker assumption.

Theorem 5.3. If t = c then there exists a set of size c of perfect measure zero

which is not strongly meager.

Proof: Let pn, n < ω be an increasing sequence of integers such that pn+1−pn ≥
n for all n. First let us show that there exists a set {xα : α < c} of infinite subsets
of ω such that

(i) α < β < c implies xβ ⊆
∗ xα;

(ii) {exα : α < c} is an unbounded family of functions;
(iii) for every α < c the set x′α = {n : [pn, pn+1) ⊆ xα} is infinite;
(iv) (∀ z ∈ P(ω))(∃α < c)(∃∞n) [pn, pn+1) ∩ xα = [pn, pn+1) ∩ z.

Let {fα : α < c} be a dominating family in ωω consisting of strictly increas-
ing functions and let {zα : α < c} be an enumeration of P(ω). We construct
the sets xα by induction on α < c so that conditions (i)–(iii) and the following
condition (iv′) are satisfied:

(iv′) (∀α < c)(∃∞n) [pn, pn+1) ∩ xα = [pn, pn+1) ∩ zα.

Let us assume that {xβ : β < α} have been constructed. By conditions (i) and (iii)

the set {x′β : β < α} is a decreasing chain with respect to ⊆∗ and since α < t there

exists y′α ∈ [ω]ω such that y′α ⊆ x′β for all β < α. Let yα =
⋃

n∈y′

α
[pn, pn+1).

Let us choose y′α in such a way that eyα 6≤ fα, i.e., eyα(n) ≥ fα(n) for infinitely
many n. Now let a0 ∪ a1 = y′α be a partition of y′ into two infinite sets. We set
xα = (

⋃

n∈a0
[pn, pn+1)) ∪ (

⋃

n∈a1
[pn, pn+1) ∩ zα). Then xα ⊆ yα and conditions

(i)–(iv) are fulfilled.
Since the set A = {xα : α < c} satisfies assumptions of Lemma 5.2, the set A

is a set of perfect measure zero.
Let G =

⋂

m

⋃

n>m Un where Un = {x ∈ P(ω) : x ∩ [pn, pn+1) = ∅}. Then

µ(G) = 0 because µ(Un) ≤ 2−n. We show that A⊕G = P(ω) and hence the set A
is not strongly meager. Let α < c be arbitrary. By (iv) for infinitely many n,
(xα ⊕ zα) ∩ [pn, pn+1) = ∅. Therefore xα ⊕ zα ∈ G and so zα ∈ A⊕G. �

6. s-sets

Theorem 6.1. The family of s-sets is an h-complete ideal.
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Proof: Let 〈Aξ : ξ < κ〉, be a sequence of s-sets where κ < h. Let {Un}∞n=0 be
a sequence of open sets. The family Xξ = {a ∈ [ω]ω : Aξ ⊆

⋃

m

⋂

k∈a\m Uk ∪
⋃

m

⋂

k∈a\m R \ Uk} for ξ < κ is an open subset of [ω]ω and therefore there is

a set a ∈
⋂

ξ<κXξ which witnesses that the union
⋃

ξ<κAξ is an s-set. �

Theorem 6.2.

(i) If a set A ⊆ R is an s-set then for every sequence of continuous functions
fn : A → [0, 1] there exists an increasing sequence of integers {nk}

∞
k=0

such that the sequence of functions {fnk
}∞k=0 converges pointwise.

(ii) If |A| < b, then A is an s-set if and only if for every sequence of con-
tinuous functions fn : A → [0, 1] there exists an increasing sequence of
integers {nk}

∞
k=0 such that the sequence of functions {fnk

}∞k=0 converges

pointwise.

Proof: (i) Let A be an s-set and let fn : A→ [0, 1] be continuous for n ∈ ω. Let
{qn : n ∈ ω} be an enumeration of rationals. The sets Un,k = {x ∈ A : fk(x) <
qn} are relatively open and since A is an s-set we can find a decreasing sequence
of sets an ⊆ ω such that A ⊆

⋃

m

⋂

k∈an\m Un,k ∪
⋃

m

⋂

k∈an\mA \ Un,k. For

any infinite pseudo-intersection a of an, n ∈ ω, the sequence of functions {fn}n∈a

converges pointwise.

(ii) Conversely, let a sequence of open sets Un, n ∈ ω, be given. Since |A| < b,
there exists a sequence of positive reals {εn}∞n=0 such that for every x ∈ A for
all but finitely many n ∈ ω, either dist(x,R \ Un) > εn or x ∈ R \ Un. For
every n ∈ ω there is a continuous function gn : R → [0, 1] such that gn(x) = 1
whenever dist(x,R \ Un) ≤ εn/2, and gn(x) > 0 if and only if dist(x,R \ Un) < εn.
Now let us assume that {gnk

}∞k=0 converges pointwise on a set A ⊆ R. Then if
limk→∞ gnk

(x) = 0, then for all but finitely many k ∈ ω, dist(x,R \ Unk
) > εnk

/2
and hence x ∈ Unk

for all but finitely many k. If limk→∞ gnk
(x) > 0, then

for all but finitely many k ∈ ω, dist(x,R \ Unk
) < εnk

. Hence by the choice
of the sequence {εn}∞n=0, x ∈ R \ Unk

for all but finitely many k. Therefore
A ⊆

⋃

m

⋂

k>m Unk
∪

⋃

m

⋂

k>m R \ Unk
. �

The following notion estimates A-permitted sets better than s-sets do.

Definition 6.3. A set A ⊆ R is an s′-set if for every sequence of disjoint couples
of open sets 〈Un, Vn : n ∈ ω〉 for which there exists a countable set S such that
R \ S ⊆ Un ∪Vn for all n, there exists an increasing sequence of integers {nk}

∞
k=0

such that A \ S ⊆
⋃

m

⋂

k>m Unk
∪

⋃

m

⋂

k>m Vnk
.

Theorem 6.4.

(i) Every s-set is an s′-set.
(ii) Every s′-set is A-permitted.

Proof: (i) Assume that Un, Vn, S are as in the definition of s′-set and let A be
an s-set. Then there exists a sequence {nk}

∞
k=0 such that A ⊆

⋃

m

⋂

k>m Unk
∪
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⋃

m

⋂

k>m R \ Unk
. But clearly,

⋃

m

⋂

k>m R \ Unk
⊆

⋃

m

⋂

k>m(Vnk
∪ S) =

S ∪
⋃

m

⋂

k>m Vnk
.

(ii) We proceed exactly like in [19] in the case of s-sets.
Let E be an A-set and let {sinmkπx}

∞
k=0 converge on E. Let {qn : n ∈ ω} be

an enumeration of Q. The set S = {x ∈ R : (∃n) sinnπx ∈ Q ∨ cosnπx ∈ Q} is
countable and the couples of disjoint open sets

Uk = {x : cos kπx > 0}, Vk = {x : cos kπx < 0}

Un,k = {x : sinkπx > qn}, Vn,k = {x : sin kπx < qn}

be such that R \ S ⊆ Ui ∪ Vi for all i ∈ ω ∪ (ω × ω). Since A is an s′-set we can
construct a sequence of infinite sets an ⊆ ω as follows:

(1) an+1 ⊆ an ⊆ {mk : k ∈ ω},
(2) A \ S ⊆

⋃

m

⋂

k∈a0\m
Uk ∪

⋃

m

⋂

k∈a0\m
Vk, and

(3) A \ S ⊆
⋃

m

⋂

k∈an+1\m
Un,k ∪

⋃

m

⋂

k∈an+1\m
Vn,k.

Let a ∈ [ω]ω be an infinite pseudo-intersection of the system {an : n ∈ ω} and
let {nk}

∞
k=0 be the strictly increasing enumeration of a. We can find a so that

the sequence {nk+1 − nk}
∞
k=0 is strictly increasing. This sequence witnesses that

the set E ∪ (A \ S) is an A-set. But as S is countable and hence A-permitted it
follows that also the set E ∪A is an A-set. Therefore A is A-permitted. �

7. Uncountable small sets

A set p ⊆ <ω2 is a perfect tree if (1) ∅ ∈ p, (2) (∀ s ∈ p)(∀n) s↾n ∈ p, and
(3) (∀ s ∈ p)(∃t ∈ p)(s ⊆ t ∧ t⌢0 ∈ p ∧ t⌢1 ∈ p).

Let P be the set of all perfect trees in <ω2 ordered by p ≤ q if and only if
p ⊆ q. Perfect trees p, q ∈ P are incompatible if there is no r ∈ P such that r ≤ p
and r ≤ q. For n ∈ ω and p ∈ P we define p ≤n q if p ≤ q and p ∩ n2 = q ∩ n2.
A set D ⊆ P is said to be ω-dense if for every tree p ∈ P and every n ∈ ω there
is q ∈ D such that q ≤n p.

Let us start with the following observations:

Fact 7.1.

(i) There is no perfect set of perfect measure zero.
(ii) There is no perfect s′-set.

Proof: (i) Every set of perfect measure zero has strong measure zero and it is
a well known fact that there is no perfect set of strong measure zero.

(ii) Let us work in the space ω2. Let p ⊆ <ω2 be a perfect tree and let
π : <ω2 → p be the natural embedding which is defined by induction on |s| for
s ∈ <ω2 as follows: π(∅) = ∅, π(s⌢i) = t⌢s i, where ts is the first splitting node
above π(s) in p. Now let Un =

⋃

{[π(s)] : s(n) = 1 ∧ s ∈ n+12}. Then there is no
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sequence {nk}
∞
k=0 such that [p] ⊆

⋃

m

⋂

k>m Un∪
⋃

m

⋂

k>m(ω2 \Un), and hence

[p] is not an s′-set. �

Let us recall that an Aronszajn tree T is an ω1-tree with no ω1-branches whose
all levels Tα, α < ω1, are countable. We denote T<α =

⋃

β<α Tβ .

Lemma 7.2. Let 〈Dα : α < ω1〉 be a sequence of open ω-dense subsets of P .
There is an Aronszajn tree T ⊆ P such that Tα ⊆ Dα for all α < ω1. Moreover,

for any two incompatible perfect trees p, q ∈ T , [p] ∩ [q] = ∅.

Proof: We use a modification of a fairly known construction of an Aronszajn
tree. We construct levels Tα of the tree T by induction on α < ω1 so that

(i) Tα is countable, and
(ii) (∀ q ∈ T<α)(∀n)(∃p ∈ Tα) q ≤n p.

Let p0 ∈ D0 be arbitrary and we let T0 = {p0}. Let us assume that T<α has been
constructed and we construct Tα.

Case 1. α is a successor ordinal, α = β + 1. For every p ∈ Tβ let us fix

a sequence of perfect trees qpn ≤n p, n ∈ ω, such that the perfect sets [qpn], n ∈ ω,
are pairwise disjoint. Since Dα is ω-closed we can find them in Dα. We then set
Tα = {qpn : p ∈ Tβ ∧ n ∈ ω}.

Case 2. α is a limit ordinal. For every p ∈ T<α and n ∈ ω let us fix an
increasing sequence of ordinals {αm}m∈ω, such that limm→∞ αm = α and us-
ing the induction hypothesis find a sequence of perfect trees qm ∈ Tαm and
an increasing sequence of integers {km}∞m=0 such that km ≥ n, qm+1 ≤km

qm
and for all s ∈ qm+1 ∩

km2 there are two incompatible extensions s0, s1 of s

in qm+1 ∩
km+12. Then rpn =

⋂

m∈ω qm is a perfect tree and rpn ≤n p. Since the

set {rpn : p ∈ T<α ∧ n ∈ ω} is countable we can refine this system of perfect trees
by a system {qpn : p ∈ T<α∧n ∈ ω} so that q

p
n ≤n r

p
n, q

p
n ∈ Dα and the perfect sets

[qpn], (p, n) ∈ T<α ×ω, are pairwise disjoint. We let Tα = {qpn : p ∈ T<α ∧ n ∈ ω}.
Since there is no decreasing chain of closed sets of length ω1, T has no ω1-

branch.
�

The Aronszajn tree T constructed in the previous proof has every level count-
able infinite and there exists a natural enumeration {pα : α < ω1} of elements
of T so that Tα = {pωα+n : n ∈ ω}. The above lemma can be easily generalized
so that we can require pα ∈ Dα for α < ω1.

We say that an ideal I on ω2 is tall if it contains all singletons and (∀ p ∈ P )
(∃q ≤ p) [q] ∈ I. If I is a tall ideal on ω2 then for every p ∈ P there exists q ≤n p
such that [q] ∈ I, i.e., the family of perfect trees DI = {p ∈ P : [p] ∈ I} is ω-dense
in P (for s ∈ p ∩ n2 let qs ≤ ps be such that [qs] ∈ I and let q =

⋃

s∈p∩n2 qs).

We do not know to whom to attribute the following theorem although we think
that it should be well known.
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Theorem 7.3. The intersection of a sequence of ω1 many tall σ-ideals on
ω2

contains an uncountable set.

Proof: Let 〈Iα : α < ω1〉 be any sequence of tall σ-ideals on ω2. Let T ⊆ P
be an Aronszajn tree such that Tα ⊆ DIα

for all α < ω1 and [p] ∩ [q] = ∅ for
incompatible p, q ∈ T . Let A be any selector of the family {[p] : p ∈ T }.

Let α < ω1 be arbitrary. Clearly, the set Bα =
⋃

p∈Tα
[p] belongs to Iα since it

is a σ-ideal, and A \ Bα is countable and hence also in Iα. Therefore A belongs
to Iα for all α < ω1 and A is clearly uncountable. �

If t = b then there exists a set of perfect measure zero of size b (Theorem 5.1).
Under the assumption b = ω1 we can obtain an uncountable set of perfect mea-
sure zero by another construction (Theorem 7.5). We need the following two
characterizations.

Lemma 7.4. Let g : ω → ω be monotone unbounded and let g(n) ≤ n for all n.
Let A ⊆ ω2.

(i) A is a set of uniform measure zero if and only if the following condition
holds:

(7.1) For every increasing f : ω → ω there are Sn ∈ [f(n)2]≤g(n) such that

A ⊆
⋃

m

⋂

n>m

⋃

s∈Sn
[s].

(ii) A is a set of perfect measure zero if and only if the following condition
holds:

(7.2) For every increasing f : ω → ω and every set a ∈ [ω]ω there are b ∈ [a]ω

and Sn ∈ [f(n)2]≤g(n) such that A ⊆
⋃

m

⋂

n∈b\m

⋃

s∈Sn
[s].

Proof: We prove the case (ii) only. The proof of the case (i) can be easily
reduced from the proof of (ii).

Obviously, (7.2) is stronger than the definition of “A is a set of perfect measure
zero.” So let us assume that A ⊆ ω2 is a set of perfect measure zero and we
prove (7.2). Let f : ω → ω be increasing and let {mk : k ∈ ω} be the increasing
enumeration of a set a ∈ [ω]ω. Let ik be the largest integer i with the minimal
value g(i) ≥ k, i.e., g−1({k}) = (ik−1, ik] for k > 0 (and some of these intervals
may be empty). Let us define the following two monotone functions:

f ′(n) = f(mk) for mk−1 < n ≤ mk, k ∈ ω,

f ′′(n) = f ′(in) for all n ∈ ω.

As A is a set of perfect measure zero there are S′′
n ∈ [f

′′(n)2]n and b′′ ∈ [ω]ω

such that A ⊆
⋃

m

⋂

n∈b′′\m

⋃

s∈S′′

n
[s]. Let S′n = {s↾f ′(n) : s ∈ S′′

g(n)} and
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b′ = g−1(b′′). If g(n) = k then f ′(n) ≤ f ′(ik) = f ′′(k) and hence S′
n ⊆

f ′(n)2,
|S′

n| ≤ g(n) and A ⊆
⋃

m

⋂

n∈b′\m

⋃

s∈S′

n
[s]. As the function f ′ is constant on

intervals (mk−1,mk] we can define a sequence 〈Sn : n ∈ ω〉 and a set b ⊂ a =
{mk : k ∈ ω} such that 〈Sn : n ∈ b〉 and 〈S′

n : n ∈ b′〉 consist of the same terms.
It follows that condition (7.2) holds. �

Theorem 7.5.

(i) The ideal Lu.m.z. is the intersection of d many tall σ-ideals.
(ii) The ideal Lp.m.z. is the intersection of b many tall σ-ideals.

Hence, if d = ω1 (resp. b = ω1) then there exists an uncountable set of uniform
measure zero (resp. of perfect measure zero).

Proof: Let
F = {g ∈ ωω : lim

n→∞
g(n)/n = 0},

and for any increasing f : ω → ω let

If ={A ⊆ ω2 : (∃g ∈ F)(∃Sn ∈ [f(n)2]g(n))A ⊆
⋃

m

⋂

n>m

⋃

s∈Sn
[s]},

Jf ={A ⊆ ω2 : (∃g ∈ F)(∀ a ∈ [ω]ω)(∃b ∈ [a]ω)(∃Sn ∈ [f(n)2]g(n))

A ⊆
⋃

m

⋂

n∈b\m

⋃

s∈Sn
[s]}.

Notice that whenever gk : ω → [ω]<ω , k ∈ ω, are such that limn→∞ |gk(n)|/n =
0 for all k ∈ ω then there is g : ω → [ω]<ω such that limn→∞ |g(n)|/n = 0 and
(∀ k)(∀∞n) gk(n) ⊆ g(n). Also if {an}∞n=0 is a decreasing sequence of infinite
subsets of ω then there is an infinite set a such that a ⊆∗ an for all n. Therefore If
and Jf are σ-ideals. Easily it can be seen that the ideals If are tall and as If ⊆ Jf
the ideals Jf are such too. Using Lemma 7.4 we can easily see that if D ⊆ ωω
is a dominating family and B ⊆ ωω is an unbounded family both consisting of
increasing functions then Lu.m.z. =

⋂

f∈D If and Lp.m.z. =
⋂

f∈B Jf . �

Notice that the above proof gives estimations for additivities of the ideals
Lu.m.z. and Lp.m.z.: add(Lu.m.z.) ≥ minf add(If ) and add(Lp.m.z.) ≥
minf add(Jf ).

Our next aim is to prove the existence of an uncountable s-set. At first attempt
to prove this using the same arguments as in Theorem 7.5 it is natural to ask about
the following σ-ideals defined from sequences X = 〈Un : n ∈ ω〉 of open sets:

IX = {A ⊆ ω2 : (∀ a ∈ [ω]ω)(∃b ∈ [a]ω)A⊆
⋃

m

⋂

n∈b\m Un∪
⋃

m

⋂

n∈b\m
ω2\Un}.

These ideals can contain perfect sets but it is not clear whether all of them and
it is not clear at all whether they are tall (see [21] for a partial information).

As we are not able to prove that the ideals IX are tall, for every sequence of
open sets X = 〈Un : n ∈ ω〉 and every a ∈ [ω]ω we define
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IX ,a = {A ⊆ ω2 : (∃b ∈ [a]ω)A ⊆ (
⋃

m

⋂

n∈b\m Un) ∪ (
⋃

m

⋂

n∈b\m
ω2 \ Un)},

DX ,a = {p ∈ P : [p] ∈ IX ,a}.

Lemma 7.6. DX ,a is an ω-dense subset of P .

Proof: Let p ∈ P and k ∈ ω. We find q ≤k p, q ∈ DX ,a.
For s ∈ p let as = {n : [ps] ∩ Un is dense in [ps]} and let S = {as : s ∈ p}.

There is a′ ∈ [a]ω such that a′ refines all sets in S, i.e., a′ ⊆∗ u or a′ ⊆∗ ω \ u
for every u ∈ S. We prove that for every s ∈ p and every set u ∈ [a′]ω there

exist v ∈ [u]ω and a perfect tree q(s) ⊆ ps such that [q(s)] ⊆
⋃

m

⋂

n∈v\m Un ∪
⋃

m

⋂

n∈v\m
ω2 \ Un. Then the lemma follows because if p ∩ k2 = {si : i ≤ n0}

then we inductively find decreasing sequence of infinite sets vi ⊆ a′ and qi ≤ psi

such that [qi] ⊆
⋃

m

⋂

n∈vi\m
Un∪

⋃

m

⋂

n∈vi\m
ω2\Un. Now it is enough to take

q =
⋃

i≤n0 qi and b = vn0 .

Let s ∈ p and u ∈ [a′]ω be arbitrary. There are two possibilities:

(1) There is t ∈ ps and m such that u \m ⊆ at.
(2) For every t ∈ ps, (∀∞n ∈ u) [pt] ∩ Un is not dense in [pt].

If (1) holds true then we set v = u and by induction for n ∈ u\m we define nth

branching levels of a tree q(s) ⊆ pt consisting of those r ∈ pt for which [pr] ⊆ Un.

If (2) holds true then by induction on n ∈ ω we define an increasing sequence

of kn ∈ u and nth branching levels of a tree q(s) ⊆ ps consisting of those r ∈ ps

for which [pr] ∩ Ukn
= ∅. Let v = {kn : n ∈ ω}. �

In general we do not know whether the families IX ,a are σ-ideals. However, all
these families possess some weak form of σ-additivity which is sufficient for our
needs:

(7.3) If 〈An : n ∈ ω〉 is a sequence of elements of IX ,a such that An ∈ IX ,a is
witnessed by some bn ∈ [a]ω such that the system {bn : n ∈ ω} is centered,
then

⋃

n∈ω An ∈ IX ,a is witnessed by any infinite pseudo-intersection of
{bn : n ∈ ω}.

Theorem 7.7. If c = ω1 then there exists an uncountable s-set.

Proof: Let Xα, α < ω1 be an enumeration of all sequences of open sets. Like
in the lemma before Theorem 7.3, by induction on α < ω1 we construct levels
Tα = {pωα+n : n ∈ ω} of an Aronszajn tree T consisting of perfect trees and
decreasing sequences of sets an+1

α ⊆ an
α ⊆ ω, n ∈ ω, so that an+1

α witnesses that
pωα+n ∈ DXα,an

α
, and let aα be an infinite pseudo-intersection of {an

α : n ∈ ω}.

Let A be any selector of the family {[p] : p ∈ T }. We prove that A is an s-set.
Let X be any sequence of open sets. There is α < ω1 such that X = Xα. By

condition (7.3) the set Bα =
⋃

p∈Tα
[p] belongs to IX ,aα

and let a ∈ [aα]ω witness

that. Since A \ Bα is countable, A \ Bα ∈ IX ,a. Consequently, A ∈ IX ,a. It
follows that A is an s-set. �
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8. Some open questions

Let F be any of the families pD, N0, N , A. The following questions are open:

(i) Is there a perfect F -permitted set?
(ii) Is there an F -permitted set of the size of continuum?

(iii) Is there an uncountable set of perfect measure zero?
(iv) Is there an s-set of the size of continuum?
(v) Are there any inclusions between Perm(F)’s?
(vi) All known lower bounds for non(F) and non(PermF) are the same. Is

non(F) = non(PermF)?
(vii) Is Perm(F) a σ-ideal? What is the additivity of Perm(F)?
(viii) In the opposite direction to condition (iv) of Theorem 3.2, in Laver’s model

Ls.m.z. = [R]≤ω. Is Perm(F) = [R]≤ω consistent with set theory?
(ix) Is there an F -permitted set which has not strong measure zero?
(x) Is there an N -permitted set not satisfying criterion (4n)?

(xi) Let p(x1, . . . , xk) be any polynomial over Z without absolute terms. Let

{l
(i)
n }

∞
n=0 denote an increasing sequence of natural numbers for 1 ≤ i ≤

k. If in criteria (2d), (2a), (n0) we replace term sin(mln − ml′n
)πx by

sin p(m
l
(1)
n
, . . . ,m

l
(k)
n

)πx we obtain generalized criteria for permittedness

(provided that the set of all values p(m
l
(1)
n
, . . . ,m

l
(k)
n

) is infinite). Some of

these criteria may be trivial, like the criterion in the remark after Theo-
rem 4.1. The question: Is there a permitted set (for family pD, N0, or A)
which does not satisfy the generalized criterion?

(xii) Is P2 a tall ideal?

Questions (ii) and (iv) are open even if we replace the phrase “set of size of
continuum” by the phrase “uncountable set.”

Fact 8.1. If Perm(F) is not a σ-ideal, then there exists an uncountable (in fact
of size ≥ f and in the case F = A also of size ≥ s) F -permitted set.

Proof: Lp.m.z. ⊆ Perm(F) and Lu.m.z. is a σ-ideal containing all sets of reals of
size < f. �
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[2] Bartoszyński T., Rec law I., Not every γ-set is strongly meager, Set theory (Bartoszynski
T. et al., eds.). Annual Boise extravaganza in set theory conference, 1992/1994, Boise State
University, Boise, ID, USA, Contemp. Math. 192 (1996), 25–29.
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[5] Bukovská Z., Thin sets in trigonometrical series and quasinormal convergence, Math.
Slovaca 40 (1990), 53–62.
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