On the Dirichlet problem for functions of the first Baire class

Jiří Spurný

Abstract. Let \mathcal{H} be a simplicial function space on a metric compact space X. Then the Choquet boundary $\operatorname{Ch} X$ of \mathcal{H} is an F_{σ} -set if and only if given any bounded Baire-one function f on $\operatorname{Ch} X$ there is an \mathcal{H} -affine bounded Baire-one function h on X such that h = f on $\operatorname{Ch} X$. This theorem yields an answer to a problem of F. Jellett from [8] in the case of a metrizable set X.

Keywords: weak Dirichlet problem, function space, Choquet simplexes, Baire-one functions

Classification: 46A55, 31B05, 26A21

1. Introduction

Let \mathcal{H} be a function space on a compact metric space X. By this we mean a linear subspace of $\mathcal{C}(X)$ (the space of all real-valued continuous functions on X equipped with the sup-norm ||.||) containing constant functions and separating points of X. Let $\mathcal{M}^1(X)$ denote the set of all probability Radon measures on X and ε_x the Dirac measure at $x \in X$. Let further $\mathcal{M}_x(\mathcal{H})$ be the set of all \mathcal{H} -representing measures for $x \in X$, i.e.

$$\mathcal{M}_x(\mathcal{H}) = \{ \mu \in \mathcal{M}^1(X) : \mu(h) = h(x) \text{ for any } h \in \mathcal{H} \}.$$

A bounded Borel function f is called \mathcal{H} -affine if it satisfies $\mu(f) = f(x)$ for any $x \in X$ and $\mu \in \mathcal{M}_x(\mathcal{H})$. The space of all \mathcal{H} -affine continuous functions will be denoted by $\mathcal{A}(\mathcal{H})$. The Choquet boundary Ch X of \mathcal{H} is defined as the set $\{x \in X : \mathcal{M}_x(\mathcal{H}) = \{\varepsilon_x\}\}$. The Choquet boundary is a G_{δ} -set and the Choquet representation theorem guarantees for any $x \in X$ the existence of a measure $\mu \in \mathcal{M}_x(\mathcal{H})$ such that $\mu(X \setminus \operatorname{Ch} X) = 0$. We say that (X, \mathcal{H}) is a simplicial space if for any $x \in X$ there is a unique measure representing x carried by the Choquet boundary.

We introduce main examples of function spaces.

Research supported in part by grants GAČR No. 201/00/0767 from the Grant Agency of the Czech Republic, GAUK 165/99 from the Grant Agency of Charles University, and in part by grant number MSM 113200007 from the Czech Ministry of Education.

Examples. 1. Continuous functions. Let X be a metric compact space. For $\mathcal{H} = \mathcal{C}(X)$ we have $\operatorname{Ch} X = X$ and $\mathcal{C}(X)$ is a simplicial space because there are no \mathcal{H} -representing measures except Dirac measures.

- 2. Affine functions. Let X be a metrizable convex compact subset of a Hausdorff locally convex space E and \mathcal{H} the linear space $\mathcal{A}(X)$ of all continuous affine functions on X. In this case the Choquet boundary Ch X coincides with the set ext X of all extreme points of X. Then $(X, \mathcal{A}(X))$ is a simplicial space if and only if X is a Choquet simplex (for a definition of a Choquet simplex see e.g. [1] or [7]).
- 3. Harmonic functions. Let Ω be a bounded open subset of a Euclidean space \mathbb{R}^n , X the closure $\overline{\Omega}$ of Ω and \mathcal{H} the linear space $H(\Omega)$ of all continuous functions on $\overline{\Omega}$ which are harmonic on Ω . We will study this example more deeply in Section 3.

A well-known theorem (cf. [11]) in the case of affine functions on a Choquet simplex X asserts that Ch X is closed if and only if any continuous function f on Ch X can be extended to an affine continuous function h on X. A similar result can be obtained for general function spaces. This paper answers the question (in the case of a metrizable space X) asked by F. Jellett in [8]. He posed a problem whether a similar assertion can be proved for F_{σ} -sets and functions of the first Baire class. In the sequel we prove a theorem which says that for a simplicial space (X, \mathcal{H}) , the Choquet boundary is an F_{σ} -set if and only if any bounded function of the first Baire class on Ch X can be extended to a bounded \mathcal{H} -affine function h of the first Baire class on X.

2. Results

Let X be a metric space. We write $B^b(X)$ for the space of all bounded real-valued Borel functions on X. Let f be a real-valued function on X. Then the function f is of the first Baire class or a Baire-one function (written $f \in B_1(X)$) if f is a pointwise limit of a sequence $\{f_n\}$ of continuous functions on X. Let us denote the set of all bounded functions of the first Baire class on X by $B_1^b(X)$. Due to [10, Theorem 2.12], a function f is of the first Baire class on a compact metric space X if and only if for every nonempty closed set F and every couple a < b, the sets $\{x \in F : f(x) < a\}$ and $\{x \in F : f(x) > b\}$ are not simultaneously dense in F (the [D-P] condition). A set B is called ambivalent if it is both an F_{σ} and G_{δ} -set, or equivalently, if the characteristic function χ_B of the set B is in $B_1(X)$. Due to the [D-P] condition, a subset B of a metric compact space is ambivalent if and only if for every nonempty closed set F, the sets $F \cap B$ and $F \setminus B$ are not simultaneously dense in F (the [A] condition).

A metric space X is said to be a Baire space if and only if the intersection of each countable family of dense open sets in X is dense. A set $A \subset X$ is residual if its complement $X \setminus A$ is a set of the first category, i.e. $X \setminus A = \bigcup_{n=1}^{\infty} A_n$ where

 A_n is a nowhere dense subset of X for every integer n. We will employ the fact that a G_{δ} -subspace F of a complete metric space X is a Baire space. Note also that a residual subset of a Baire space is dense. A suitable reference for details on Baire spaces is [6].

For a set B in a metric space X let us denote by der(B) the set of all accumulation points of B.

Theorem. Let (X, \mathcal{H}) be a simplicial space. Then the following assertions are equivalent:

- (i) Ch X is an F_{σ} -set,
- (ii) given $f \in B_1^b(\operatorname{Ch} X)$ there exists an \mathcal{H} -affine function $h \in B_1^b(X)$ such that h = f on $\operatorname{Ch} X$.

In what follows we assume that (X, \mathcal{H}) is a simplicial space. Let us denote by μ_x the unique probability measure on X representing a point x supported by Ch X. We will consider the operator $T: B^b(X) \to B^b(X)$ defined by $Tf(x) = \int_X f \ d\mu_x$ for $f \in B^b(X)$. According to [11, Proposition 9.10], T maps $\mathcal{C}(X)$ into $B_1^b(X)$. Thus T maps a bounded Borel function f on X onto a bounded Borel function Tf. Let us notice that Tf(x) = f(x) for $x \in \operatorname{Ch} X$.

Let B be a Borel set, $\operatorname{Ch} X \subset B \subset X$ (in particular $B = \operatorname{Ch} X$). Given a bounded Borel function g on B, define Tg as Tf, where a bounded Borel function f on X is defined by f = g on B and f = 0 elsewhere. Since any measure μ_x is carried by the Choquet boundary we see that $Tg(x) = Tf(x) = \mu_x(f) = \mu_x(g)$ for every point $x \in X$.

Lemma 1. Let $f \in B^b(X)$. Then Tf is an \mathcal{H} -affine function on X.

PROOF: Given $y \in X$ and $\lambda \in \mathcal{M}_y(\mathcal{H})$, define a linear functional μ on $\mathcal{C}(X)$ by the formula $\mu(g) = \int_X Tg \ d\lambda$, $g \in \mathcal{C}(X)$. Then μ is obviously a probability measure representing the point y. The equality

$$\mu(\operatorname{Ch} X) = \int_X \mu_x(\operatorname{Ch} X) \ d\lambda = \int_X 1 \ d\lambda = 1$$

now implies that μ is supported by Ch X. Therefore $\mu = \mu_y$ because (X, \mathcal{H}) is a simplicial space. Thus we obtain

$$\lambda(Tf) = \int_{X} \mu_{x}(f) \, d\lambda = \mu(f) = \mu_{y}(f) = Tf(y)$$

and the proof is complete.

Lemma 2. Suppose that $f \in B^b(\operatorname{Ch} X)$ and $F \in B^b(X)$ is an \mathcal{H} -affine function such that F = f on $\operatorname{Ch} X$. Then F = Tf.

PROOF: Pick $y \in X$. Since F is \mathcal{H} -affine, we have

$$F(y) = \int_{\operatorname{Ch} X} F(x) \, d\mu_y(x) = \int_{\operatorname{Ch} X} f(x) \, d\mu_y(x) = Tf(y).$$

Lemma 3. Let $\operatorname{Ch} X$ be an F_{σ} -set and $f \in B_1^b(\operatorname{Ch} X)$. Then Tf is an \mathcal{H} -affine function of the first Baire class.

PROOF: Due to the assumption we write $\operatorname{Ch} X = \bigcup_{n=1}^{\infty} F_n$ where F_n are compact sets such that $F_1 \subset F_2 \subset \cdots \subset \operatorname{Ch} X$. Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of continuous functions on $\operatorname{Ch} X$ converging pointwise to f. We may assume that ||f||, $||f_n||$ are bounded by a positive number M. Since (X, \mathcal{H}) is a simplicial space, according to $[3, \operatorname{Corollary} 3.6]$, there exist \mathcal{H} -affine continuous functions h_n on X such that $h_n = f_n$ on $\operatorname{Ch} X$ and $||h_n|| = ||f_n||$.

The proof will be completed by showing that $h_n(x) \to Tf(x)$ for all $x \in X$. For fixed $x \in X$ and ε positive choose an integer n_0 such that $\int_X |f - f_n| \ d\mu_x < \varepsilon$ and $\mu_x(F_n) > 1 - \varepsilon$ for all $n \ge n_0$. For such n we have

$$|Tf(x) - h_n(x)| = \left| \int_X (f - h_n) d\mu_x \right|$$

$$\leq \int_X |f - f_n| d\mu_x + \int_X |f_n - h_n| d\mu_x$$

$$\leq \varepsilon + \int_{\operatorname{Ch} X \setminus F_{n_0}} 2M d\mu_x \leq \varepsilon (1 + 2M),$$

which proves the lemma.

We start the main part of the proof of the Theorem with the following lemma.

Lemma 4. Let F be a metric compact space and G be a subset of F such that $\overline{G} = F = \overline{F \setminus G}$. Let $K \subset G$ be a closed subset of F. Then K is nowhere dense in G.

PROOF: Since K is a closed set in F, it is a closed subset of G as well. Suppose that K is not nowhere dense in G. Find a nonempty open set $U \subset F$ such that $U \cap G \neq \emptyset$ and $U \cap G \subset K$. Since $F \setminus G$ is dense in F, we may find a point $x \in U \cap (F \setminus G)$. Due to density of G in F, there is a sequence $\{x_n\}$ of points of G such that $x = \lim_{n \to \infty} x_n$. Since $x \in G$ and $x \in G$ is open in $x \in G$. This contradiction concludes the proof.

Lemma 5. If Ch X is not an F_{σ} -set, then there exists a function $f \in B_1^b(X)$ such that $Tf \notin B_1^b(X)$.

PROOF: Suppose that the Choquet boundary Ch X of \mathcal{H} is not an F_{σ} -set. Thus it is not an ambivalent set and according to condition [A] we can find a nonempty closed set F satisfying $F = \overline{F \cap \operatorname{Ch} X} = \overline{F \setminus \operatorname{Ch} X}$. Let B denote the set $\{x \in \overline{F} \setminus \operatorname{Ch} X = \overline{F} \setminus \operatorname{Ch} X =$ $F \setminus \operatorname{Ch} X : \mu_x(F) \geq \frac{1}{2}$. Suppose that B is not dense in F. Then there exists an open set $U \subset X$ satisfying $U \cap F \neq \emptyset$ and $U \cap F \cap B = \emptyset$. The function $f = \chi_F$ is of the first Baire class. Since

$$Tf(x)$$
 $\begin{cases} = 1 & \text{for } x \in F \cap \text{Ch X} \cap U, \\ \leq \frac{1}{2} & \text{for } x \in (F \setminus \text{Ch X}) \cap U, \end{cases}$

we see that Tf is not in $B_1^b(X)$ due to condition [D-P] applied to the set $\overline{U \cap F}$. Thus we may suppose that B is dense in F.

Choose a countable set $S_1 \subset B$ dense in B, $S_1 = \{x_n\}_{n=1}^{\infty}$. Denote $\mu_n = \mu_{x_n}$. Fix an integer n. Since

$$\mu_n(F) \ge \frac{1}{2}$$
 and $\mu_n(F \setminus \operatorname{Ch} X) = 0$,

inner regularity of Radon measures allows us to find a compact subset K_n of Xsuch that $K_n \subset F \cap \operatorname{Ch} X$ and $\mu_n(K_n) \geq \frac{1}{4}$.

Set $Y = F \cap \operatorname{Ch} X$ and $K = \bigcup_{n=1}^{\infty} \tilde{K_n}$. Due to Lemma 4 the set K is a countable union of closed nowhere dense subsets of Y. Hence K is of the first Baire category in Y. Since Y is a G_{δ} -subset of a compact metric space, it is a Baire space. Since the set $Y \setminus K$ is residual in Y, it is dense in Y. Due to density of Y in F we obtain that $Y \setminus K$ is dense in F. Find a countable set $S_2 \subset Y \setminus K$ such that S_2 is dense in F.

Thus we have two countable sets S_1 , S_2 such that

$$S_1 \subset F \setminus \operatorname{Ch} X,$$

 $S_2 \subset F \cap (\operatorname{Ch} X \setminus K),$

and both of them are dense in F. Let us denote $F_0 = \{x_1\}$. We will construct by induction nonempty sets $\{F_n\}_{n=1}^{\infty}$ and nonempty open sets $\{V_n\}_{n=1}^{\infty}$, $\{U_n\}_{n=1}^{\infty}$ such that for every integer n

- (i) $\bigcup_{k=0}^{n} F_k$ is closed, (ii) $\bigcup_{k=0}^{n} F_k \subset \bigcap_{k=1}^{n} U_k$,
- (iii) $K_n \subset V_n$,
- (iv) $U_n \cap V_n = \emptyset$,
- (v) $der(F_n) \cap S_1 = F_{n-1}$ and $der(F_n) \cap S_2 = F_{n-1}$,
- (vi) $F_n \subset S_1 \cup S_2$.

First, let us find disjoint open sets U_1 , V_1 such that $x_1 \in U_1$ and $K_1 \subset V_1$. Since S_1 and S_2 are dense in F, there exists a set $F_1 \subset S_1 \cup S_2$ with $F_1 \subset U_1$, $\operatorname{der}(F_1 \cap S_1) = \{x_1\}$ and $\operatorname{der}(F_1 \cap S_2) = \{x_1\}$. Then all the required conditions are clearly satisfied.

Suppose that F_j , V_j , U_j with desired properties have been constructed for $j \leq n$. Since $S_1 \cup S_2$ is disjoint from K, condition (vi) implies that K_{n+1} is disjoint from $\bigcup_{k=0}^n F_k$. Find two disjoint open sets U_{n+1} , V_{n+1} satisfying $\bigcup_{k=0}^n F_k \subset U_{n+1}$ and $K_{n+1} \subset V_{n+1}$. Let us construct $F_{n+1} \subset S_1 \cup S_2$ such that $F_{n+1} \subset \bigcap_{k=1}^{n+1} U_k$ and $\operatorname{der}(F_{n+1} \cap S_1) = F_n$, $\operatorname{der}(F_{n+1} \cap S_2) = F_n$. Then all the required conditions are satisfied.

Put $H = \bigcup_{n=0}^{\infty} F_n$. Conditions (ii) and (iv) imply that $H \cap \bigcup_{n=1}^{\infty} V_n = \emptyset$. Thus the set \overline{H} is a closed set disjoint with K. Moreover, by (v) both sets $H \cap S_1$ and $H \cap S_2$ are dense in H. Thus $\overline{H \cap S_1} = \overline{H} = \overline{H \cap S_2}$. Set $f = \chi_{\overline{H}}$. Then f is a function of the first Baire class on X. If x is in $H \cap S_1$ then

$$\mu_n(\overline{H}) \le \mu_n(X \setminus K) \le \mu_n(X \setminus K_n) \le \frac{3}{4},$$

which implies

$$Tf(x)$$

$$\begin{cases}
= 1, & x \in H \cap S_2, \\
\le \frac{3}{4}, & x \in H \cap S_1.
\end{cases}$$

By applying condition [D-P] to the set \overline{H} , we get that Tf is not a function of the first Baire class and the proof is complete.

PROOF OF THE THEOREM: The implication (i) \Rightarrow (ii) is a consequence of Lemma 1 and Lemma 3. For the converse, suppose that Ch X is not an F_{σ} -set. Due to Lemma 5 there exists a function $f \in B_1^b(X)$ such that Tf is not in $B_1^b(X)$. Then $g = f|_{\text{Ch X}}$ is clearly a Baire-one function on Ch X. If F is an \mathcal{H} -affine Borel function equal to g on Ch X then Lemma 2 yields F = Tg = Tf. But Tf is not a function of the first Baire class and this proves the Theorem.

3. An application in potential theory

Let Ω be an open bounded subset of \mathbb{R}^n and let the function space \mathcal{H} consist of all functions continuous on $\overline{\Omega}$ harmonic on Ω . For a real-valued function f defined on the boundary $\partial\Omega$ we denote by Hf the PWB-solution of the Dirichlet problem on Ω with the boundary condition f provided it exists. Given $x \in \Omega$, we have $Hf(x) = \lambda_x(f)$ where λ_x is a harmonic measure representing the point x. In this case the Choquet boundary of \mathcal{H} coincides with the set $\partial_{\text{reg}}\Omega$ of all regular points of Ω . According to a deep result of J. Bliedtner and W. Hansen [4] the function space $(\overline{\Omega}, \mathcal{H})$ is simplicial. Moreover, $\mathcal{H} = \mathcal{A}(\mathcal{H})$ and for any $x \in \Omega$ the measure μ_x equals λ_x .

If we reformulate the general results into the language of potential theory we get the following assertions.

Proposition 1. The set of regular points $\partial_{\text{reg}}\Omega$ is closed if and only if for any continuous function f defined on $\partial_{\text{reg}}\Omega$ there exists a function h continuous on $\overline{\Omega}$ and harmonic on Ω such that h = f on $\partial_{\text{reg}}\Omega$.

Proof:	Follows	by [1, Theorem	n II.4.3].	
--------	---------	------	------------	------------	--

Proposition 2. The set of all regular points $\partial_{\text{reg}}\Omega$ is an F_{σ} -set if and only if for any bounded function f of the first Baire class defined on $\partial_{\text{reg}}\Omega$ there exists a bounded $H(\Omega)$ -affine function h of the first Baire class on $\overline{\Omega}$ such that h = f on $\partial_{\text{reg}}\Omega$.

PROOF: The proof is a direct consequence of the Theorem. \Box

4. Final remarks and open problems

- 1. It seems to be an open problem whether or not the Theorem is valid if we omit the condition of metrizability of the space X. If X is a compact Hausdorff space only then the Choquet boundary $\operatorname{Ch} X$ need not be a Borel set and the situation is much more complicated.
- 2. The first implication of the Theorem has been known since sixties. The proof can be found e.g. in [5] and [9].
- 3. Consider again the function space of Example 3 (harmonic functions). Following a definition of H. Bauer [2], the set Ω is termed *semiregular* if the PWB-solution Hf can be continuously extended to the closure $\overline{\Omega}$ of Ω for any continuous function f on $\partial\Omega$. Proposition 1 tells us that Ω is semiregular if and only if the set $\partial_{\text{reg}}\Omega$ is closed.
- 4. Let X be a compact convex subset of a locally convex space E. If X is a Choquet simplex and the set of all extreme point ext X is closed we call X a Bauer simplex. Alfsen [1] is a suitable reference for further details on Bauer simplexes.

Acknowledgment. The author wishes to express his thanks to Prof. J. Lukeš for drawing his attention to [8], many helpful comments and encouragements. He would also like to extend his thanks to the referee without whose critical comments this improved version would not have been possible.

References

- Alfsen E.M., Compact convex sets and boundary integrals, Springer-Verlag, New York-Heidelberg, 1971.
- [2] Bauer H., Axiomatische behandlung des Dirichletschen problems fur elliptische und parabolische differentialgleichungen, Math. Ann. 146 (1962), 1–59.
- [3] Boboc N., Cornea A., Convex cones of lower semicontinuous functions on compact spaces, Rev. Roum. Math. Pures. App. 12 (1967), 471-525.
- [4] Bliedtner J., Hansen W., Simplicial cones in potential theory, Invent. Math. (2) 29 (1975), 83-110.

- [5] Capon M., Sur les fonctions qui vérifient le calcul barycentrique, Proc. London Math. Soc.
 (3) 32 (1976), 163-180.
- [6] Engelking R., General Topology, Heldermann, Berlin, 1989.
- [7] Choquet G., Lectures on analysis vol. II: Representation theory, W.A. Benjamin, Inc., New York-Amsterdam, 1969.
- [8] Jellett F., On affine extensions of continuous functions defined on the extreme boundary of a Choquet simplex, Quart. J. Math. Oxford (2) 36 (1985), 71–73.
- [9] Lacey H.E.. Morris P.D., On spaces of type A(K) and their duals, Proc. Amer. Math. Soc. 23 (1969), 151–157.
- [10] Lukeš J., Malý J., Zajíček L., Fine topology methods in real analysis and potential theory, Lecture Notes in Math. 1189, Springer-Verlag, 1986.
- [11] Phelps R.R., Lectures on Choquet's theorem, D. Van Nostrand Co., 1966.

DEPARTMENT OF MATHEMATICAL ANALYSIS, FACULTY OF MATHEMATICS AND PHYSICS, CHARLES UNIVERSITY, SOKOLOVSKÁ 83, 186 75 PRAGUE 8, CZECH REPUBLIC E-mail: spurny@karlin.mff.cuni.cz

(Received May 17, 2001, revised June 27, 2001)