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Quasiharmonic fields and Beltrami operators

Claudia Capone

Abstract. A quasiharmonic field is a pair F = [B, E] of vector fields satisfying divB = 0,
curlE = 0, and coupled by a distorsion inequality. For a given F , we construct a matrix
field A = A[B, E] such that AE = B. This remark in particular shows that the theory
of quasiharmonic fields is equivalent (at least locally) to that of elliptic PDEs.
Here we stress some properties of our operator A[B, E] and find their applications

to the study of regularity of solutions to elliptic PDEs, and to some questions of G-

convergence.
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1. Introduction

In the recent paper [8], the notion of quasiharmonic fields is introduced in
order to stress and take advantage of the deep interplay between the theory of
quasiconformal mappings and that of partial differential equations.
Given an open subset Ω ⊂ R

n and two vector fields B ∈ Lq(Ω, Rn), E ∈
Lp(Ω, Rn), 1 < p, q < ∞, 1/p + 1/q = 1 satisfying divB = 0, curlE = 0 in the
sense of distributions, the pair F = [B, E] will be termed div-curl couple. An
important example of a div-curl couple is associated naturally with a variational
PDE; if

div A(x)∇u = 0,

then we set E = ∇u and B = A∇u. The equation is elliptic if the coefficient
matrix A = A(x) satisfies

(1.1)
|X |2
K

≤ 〈A(x)X, X〉 ≤ K|X |2 for all X ∈ R
n and for a.e. x ∈ Ω

with a measurable function K = K(x) ≥ 1 on Ω. Hereafter, 〈 , 〉 denotes the
scalar product in R

n. Inequality (1.1) can be rephrased as

|A(x)X |2 + |X |2 ≤
(

K(x) +
1

K(x)

)

〈A(x)X, X〉,

This paper is part of a research activity made in Dipartimento di Costruzioni e Metodi
Matematici in Architettura, supported by European Union (F.S.E.).



364 C.Capone

for all X ∈ R
n and for a.e. x ∈ Ω. A similar inequality is the so-called distortion

inequality for the couple F = [B, E]:

(1.2) |B(x)|2 + |E(x)|2 ≤
(

K(x) +
1

K(x)

)

〈B(x), E(x)〉.

For a.e. x ∈ Ω, it clearly implies that eitherB(x) = E(x) = 0, or 〈B(x), E(x)〉 > 0.
A K-quasiharmonic field is a div-curl couple F = [B, E] satisfying (1.2). The
function K = K(x) is called the distortion function of F .
One of the key ingredients in the treatment of [8] is the construction of a

symmetric matrix field A = A(x) of the form
(1.3) A = λI +

(

1/λ − λ
)

e ⊗ e

with λ = λ(x) > 0 and a unit vector e = e(x) of Rn, |e| = 1, such thatA(x)E(x) =
B(x), for a.e. x ∈ Ω.
In this paper, our first concern will be to present a simple and abstract con-

struction of that type. It is of course equivalent to deal with linear operators on
R

n, or with square real matrices of order n, and we shall use either terminology,
depending on the context. The argument we are going to present is point-wise,
and thus, for given vectors B, E ∈ R

n satisfying 〈B, E〉 > 0, we shall investigate
the class L = L(B, E) of all linear operators A : Rn → R

n which are symmetric,
positive and map E onto B; that is, A ∈ L means that for arbitrary X, Y ∈ R

n

we have
〈AX, Y 〉 = 〈X, AY 〉 , 〈AX, X〉 ≥ 0 , AE = B.

We shall show that there exists an operator A ∈ L of the form (1.3), where λ is
a positive number and is found from the equality:

(1.4) |B|2 + |E|2 =
(

1/λ+ λ
)

〈B, E〉.
We shall also stress some properties of such an operatorA in certain sense showing
its optimality in the class L, regarding to ellipticity bounds.
Our interest for the class L, and in particular for operators in L of the form

(1.3), is motivated by the observation that operators of this type occur repeatedly
in some problems in analysis; in addition to the already mentioned [8], we quote
e.g. [15], [2], [9].
It is worth mentioning that a systematic method of finding a coefficient matrix

from a given div-curl couple was first presented in [18].
The paper is organized as follows. In Section 2 we present our construction of

the operator A and investigate some of its properties. In Section 3 we examine
the particular case of dimension n = 2. Then we present some applications of the
preceding study. The subject of Section 4 is a conjecture on the best integrability
exponent for derivatives of solutions to an elliptic equation in dimension n = 2, see
[13], [14], recently proved by Leonetti-Nesi [10]; the proof we present here is based
on the arguments of the preceding sections. In Section 5 we see that the class of
operators of the form (1.3) is relevant also in some questions on G-convergence.
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2. The operator A
Given a symmetric matrix A ∈ R

n×n, let {e1, . . . , en} be an orthonormal basis
of eigenvectors of A and let λ1, . . . , λn be the corresponding eigenvalues. Thus
we can write

(2.1) A = λ1e1 ⊗ e1 + · · ·+ λnen ⊗ en.

Throughout the paper, given a = (a1, . . . , an) ∈ R
n, the tensor product a ⊗ a

denotes the symmetric matrix whose entries are the products aiaj .

Equality (2.1) is evident identifying, as we did, every matrix of Rn×n with the
operator which it represents. In this case, a ⊗ a is the operator defined by the
formula

(a ⊗ a)(x) = 〈a, x〉a, x ∈ R
n.

Hence (2.1) is immediate on the vectors of the basis {e1, . . . , en}. Clearly, identity
(2.1) is equivalent to diagonalize the matrix A.
In the case n = 2, (2.1) reduces to

(2.2) A = λ1e1 ⊗ e1 + λ2e2 ⊗ e2.

In particular, the identity matrix can be written as

(2.3) I = e1 ⊗ e1 + e2 ⊗ e2

and hence

(2.4) A = λ1I + (λ2 − λ1)e2 ⊗ e2.

Moreover if detA = 1, then λ2 = 1/λ1. So a symmetric matrix A ∈ R
2×2 has

detA = 1 if and only if it has the following representation

(2.5) A = λI +
(

1/λ − λ
)

e ⊗ e

with λ ∈ R − {0} and |e| = 1.
In a general dimension n, if the matrix A has the form as in (2.5), e is an

eigenvector of A, with eigenvalue 1/λ, while λ is the eigenvalue corresponding to

the eigenspace 〈e〉⊥, hence we have

detA = λn−11/λ = λn−2.

Now, we introduce some notation. Given a symmetric operator A : Rn → R
n, we

denote by m, M its minimum and the maximum eigenvalue, respectively, that is

(2.6) m = inf
|X|=1

〈AX, X〉, M = sup
|X|=1

〈AX, X〉.

Moreover we denote K = max {λ, 1/λ}, with λ defined in (1.4).
This section is devoted to prove the following
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Proposition 2.1. Let B, E ∈ R
n be two vectors satisfying 〈B, E〉 > 0 and define

K ≥ 1 by the equality
|B|2 + |E|2 =

(

K + 1/K
)

〈B, E〉.
Then there exists an operator A of the form (1.3) which satisfies

(2.7)
|X |2
K

≤ 〈AX, X〉 ≤ K|X |2, ∀X ∈ R
n.

Moreover, if |B| = |E|, then the operator A minimizes in the class L the ratio
M/m between the maximum and the minimum eigenvalue. Finally, for every

symmetric operator A such that AE = B, at least one of the following inequalities
holds: m ≤ 1/K or M ≥ K.

First, we construct an operator A ∈ L of the form (1.3). Incidentally, we
remark that our argument extends to handle, without any additional difficulties,
instead of Rn the more general context of a vector space H endowed with a scalar
product 〈, 〉 and dimH ≥ 2.
As by assumption 〈B, E〉 > 0, we can find λ > 0 verifying (1.4), that is

(2.8) |B|2 + |E|2 =
(

1/λ+ λ
)

〈B, E〉.
We examine two cases. If B = λE, we take any vector e ∈ R

n, |e| = 1, orthogonal
to E: 〈e, E〉 = 0. If B 6= λE, we define

e =
B − λE

|B − λE| .

Let us verify that then A ∈ L. The equality AE = B is trivial in the first case
considered. Assuming B 6= λE, we find

AE = λE +

(

1

λ
− λ

) 〈B − λE, E〉
|B − λE|2 (B − λE)

and the equality follows again by noticing that (1.4) implies

(

1/λ − λ
) 〈B − λE, E〉

|B − λE|2 = 1.

Now we check (2.7). It is enough to consider the case B 6= λE. Then we compute

〈AX, X〉 = λ|X |2 +
(

1/λ − λ
)

〈e, X〉2

which immediately implies (2.7) by applying Schwarz inequality.

Next, we minimize the ratio M/m over A in the class L, that is, we consider
the problem

(2.9) min {M/m ; A ∈ L} .

Actually, it will be convenient to study the following problem, which is clearly
equivalent to (2.9):

(2.10) min
{

√

M/m+
√

m/M ; A ∈ L
}

.
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Lemma 2.1. The minimum value at (2.10) equals
2|B||E|
〈B,E〉

.

Proof: First, we show that for each A ∈ L we have

(2.11)
{

√

M/m+
√

m/M
}

≥ 2|B||E|/〈B, E〉.

To this end, we note that (A−mI), (MI−A) are positive operator which commute
and hence the composition (A − mI)(MI − A) is positive as well ([11, p. 155]).
Then for every X ∈ R

n we compute

0 ≤ 〈(A − mI)(MI − A)X, X〉 = 〈MX − AX, AX − mX〉
= (m+M)〈AX, X〉 − |AX |2 − mM |X |2,

thus

(2.12) |AX |2 +mM |X |2 ≤ (m+M)〈AX, X〉.

Now we recall that AE = B and, therefore, for X = E (2.12) yields

(m+M)〈B, E〉 ≥ |B|2 +mM |E|2 =
√

mM |B||E|





1
√

mM
|E|
|B|

+
√

mM
|E|
|B|





≥ 2
√

mM |B||E|

which immediately implies (2.11).

To conclude the proof of the lemma, we exhibit an operator in L for which
equality at (2.11) occurs. For this, we reduce to the case |B| = |E| introducing
B′ =

|E|
|B|

B and considering the couple (B′, E) in place of (B, E). It is clear that

A′ ∈ L(B′, E) if and only if A =
|B|
|E|

A′ ∈ L(B, E), the ratio M/m being the same

for both A and A′. Thus we may assume |B| = |E|. In this case for the operator
A defined in (1.3) we find

2|B||E|
〈B, E〉 =

|B|2 + |E|2
〈B, E〉 = λ+

1

λ
= K +

1

K
.

In view of (2.7) we have
√

M/m ≤ K and hence

2|B||E|/〈B, E〉 ≥
√

M/m+
√

m/M ,

which shows that equality at (2.11) holds.
To proceed further, we need the following
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Lemma 2.2. For any symmetric operator A and number K ≥ 1, the following
conditions are equivalent to each other:

(a) |X |2/K ≤ 〈AX, X〉 ≤ K|X |2, ∀X ∈ R
n;

(b) |AX |2 + |X |2 ≤ (K + 1/K) 〈AX, X〉, ∀X ∈ R
n.

Proof: Assuming (a), we have inequality (2.12) with m = 1/K and M = K,
which is exactly (b). For the opposite implication, we note that if (b) holds with
K = 1, then AX = X and (a) is clear. In case K > 1, (b) implies

0 ≤ |AX − KX |2 ≤ (1− K2)
(

〈AX, X〉/K − |X |2
)

so that 〈AX, X〉 ≤ K|X |2. In the same way

0 ≤ |AX − X/K|2 ≤ (K − 1/K)
(

〈AX, X〉 − |X |2/K
)

and hence

〈AX, X〉 ≥ |X |2/K.

To conclude the proof of Proposition 2.1, it remains to show that, if A is symmetric
and AE = B, then m ≤ 1/K or M ≥ K. We argue by contradiction, assuming
that 1/K < m ≤ M < K. Set K ′ = max{M, 1/m}, we therefore have 1 ≤ K ′ <
K and

|X |2/K ′ ≤ 〈AX, X〉 ≤ K ′|X |2, ∀X ∈ R
n.

By Lemma 2.2, for X = E, this implies

(

K ′ + 1/K ′) 〈B, E〉 ≥ |B|2 + |E|2 = (K + 1/K) 〈B, E〉,

that is,

K ′ + 1/K ′ ≥ K + 1/K

which is in contrast with the definition of K ′. �

Remark. In [9] the optimality of the ratio of eigenvalues has been investigated
in connection with Koshelev’s number [7].

3. Some special cases

First, we consider the 2-dimensional case. Then we have uniqueness of the
operator A in (1.3) under the assumption detA = 1, that is, Proposition 2.1
specializes to the following
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Proposition 3.1. For given vectors E = (E1, E2), B = (B1, B2) of R
2 satisfying

〈B, E〉 > 0, there exists a unique symmetric 2× 2 matrix A = A[B, E] such that

(3.1)

{

detA = 1,
AE = B.

If we set

A =
(

a b
b c

)

,

we have

(3.2) a =
B21 + E22
〈B, E〉 ; b =

B1B2 − E1E2
〈B, E〉 ; c =

B22 + E21
〈B, E〉 .

We callA[B, E] the Beltrami operator associated with the couple of vectors [B, E].
Formulas (3.2) give the following, in case B = AE for a given symmetric matrix

(3.3)

A =

(

α β
β γ

)

,

a =
α2E21 + 2αβE1E2 + (1 + β2)E22

〈AE, E〉 ,

b =
αβE21 + (αγ + β2 − 1)E1E2 + βγE22

〈AE, E〉 ,

c =
γ2E22 + 2βγE1E2 + (1 + β2)E21

〈AE, E〉

(see [15]).
We note that the ellipticity condition for the matrix A

|X |2/K ≤ 〈AX, X〉 ≤ K|X |2

is preserved precisely for A.
Corollary 3.1. Given a vector E = (E1, E2) and a symmetric matrix A ∈ R

2×2

such that

|X |2/K ≤ 〈AX, X〉 ≤ K|X |2,
there exists a symmetric matrix A ∈ R

2×2 such that

detA = 1, AE = AE

and

|X |2/K ≤ 〈AX, X〉 ≤ K|X |2.
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Formulas (3.3) easily generalize to the case of a nonsymmetric matrix A:

A =

(

α β
δ γ

)

,

a =
α2E21 + 2αβE1E2 + (1 + β2)E22

〈AE, E〉 ,

b =
αδE21 + (αγ + βδ − 1)E1E2 + βγE22

〈AE, E〉 ,

c =
γ2E22 + 2δγE1E2 + (1 + δ2)E21

〈AE, E〉 .

It is interesting to compare the constant in the ellipticity condition also in this
non-symmetric case. So we assume

(3.4) m|X |2 ≤ 〈AX, X〉, |AX | ≤ M |X |, ∀X ∈ R
2.

Clearly, as we require B = AE, the best values we can expect for m, M are

(3.5) m =
〈B, E〉
|E|2 , M =

|B|
|E| .

Indeed, we have the following

Proposition 3.2. Given E, B ∈ R
2 with 〈B, E〉 > 0, there exists a (not neces-

sarily symmetric) matrix A such that AE = B and satisfying (3.4), for m and M
defined at (3.5). Moreover, there exists a symmetric matrix A of the form (1.3)
with

K = max{λ, 1/λ} = 1
2





1 +M2

m
+

√

(

1 +M2

m

)2

− 4



 .

The existence of the matrix A is trivial if B is proportional to E. Otherwise, we

may assume E =
(

1
0

)

; writing B =
( a

b

)

we can choose

A =

(

a −b
b a

)

.

On the other hand, following our construction of A, K is found by solving the
equation, see (2.8),

K +
1

K
=

|B|2 + |E|2
〈B, E〉 =

1

m
(1 +M2).

Remark. Proposition 3.2 extends readily to the case n ≥ 3. We define A on
the 2-dimensional subspace spanned by E and B by the above argument, and on
the orthogonal complement as the multiple of identity with factor 〈B, E〉/|E|2 to
guarantee (3.4).
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4. Some applications

Let Ω be an open subset of R
2 and A = A(x) a 2 × 2 symmetric matrix of

measurable functions verifying

|X |2/K ≤ 〈AX, X〉 ≤ K|X |2

for all X ∈ R
2, with K ≥ 1.

Here we are concerned with weak solutions u ∈ W 1,2(Ω) to the elliptic equation

(4.1) div(A∇u) = 0.

We have the following

Theorem 4.1. Every solution u ∈ W 1,2(Ω) to equation (4.1) satisfies

(4.2) |∇u| ∈ weak − L
2K

K−1 (Ω′)

for every Ω′ ⊂⊂ Ω. In particular, |∇u| ∈ Ls
loc(Ω), ∀ s ∈ [1, 2K/(K − 1)[ .

Conjectures about the best integrability exponent for the derivatives of solutions
to second order elliptic equations in dimension n = 2, and its relation to the best
Hölder exponent for the solutions, were made by several authors, see [13], [14].
The above result is proved recently by Leonetti-Nesi [10]. Here we present a
different proof, which is based on our construction of a matrix A with the same
ellipticity bounds as A

|X |2/K ≤ 〈AX, X〉 ≤ K|X |2

satisfying

(4.3) detA = 1 a.e.

and such that u solves the equation

(4.4) div(A∇u) = 0,

see Section 3. We can assume Ω bounded and simply connected and u non con-
stant. Then (see [1]) by (4.3) the measurable Riemann mapping theorem can be
used to factor u as u = w ◦ f where f : Ω → B(0, 1) is K-quasiconformal and
w : B(0, 1)→ R is harmonic.
Let now Ω′ ⊂⊂ Ω. Being f a homeomorphism, f(Ω′) ⊂⊂ B(0, 1) and hence for
a.e. x ∈ Ω′

|∇u(x)| = |∇w(f(x))Df(x)| ≤
(

sup
f(Ω′)

|∇w|
)

· |Df(x)|.

By Astala’s result |Df |2 ∈ weak−L
K

K−1 (Ω′) as for any measurable subset E ⊂ Ω′
we have

∫

E
|Df |2 dx ≤ K

∫

E
detDf dx = K|f(E)| ≤ C|E|

1

K

and the result of Theorem 4.1 follows.
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5. Applications to G-convergence

Let Ω be a bounded open subset of Rn, K ≥ 1 be a constant and A = (aij) be
a measurable n×n-matrix valued function defined on Ω satisfying aij(x) = aji(x)
and

(5.1) |X |2/K ≤
∑

ij

aij(x)XiXj ≤ K|X |2

for a.e. x ∈ Ω and for all X ∈ R
n. We denote by M(K) the set of such functions

A = A(x). As already noted, inequality (4.1) can be rephrased as

(5.2) |AX |2 + |X |2 ≤ (K + 1/K) 〈AX, X〉.

For each matrix A ∈ M(K), we can consider the elliptic differential operator

A =
∑

ij

Di(aijDj).

With abuse of notation, we shall say that A belongs to M(K). Being Ω bounded,
A : H10 (Ω)→ H−1(Ω) is an isomorphism.
In this section, we study G-convergence of operators in M(K). Let Ah =

∑

ij Dia
h
ijDj ∈ M(K), h ∈ N, A ∈ M(K); we say that {A}h G-converges to

A, and write Ah
G−→ A (or even Ah

G−→ A) if for all F ∈ H−1(Ω) we have

A−1
h

F ⇀ A−1F weakly in H10 (Ω), that is, if uh, u are respectively the solutions
of the Dirichlet problems

{
∑

ij Di(a
h
ijDjuh) = F

uh ∈ H10 (Ω)

{
∑

ij Di(aijDju) = F

u ∈ H10 (Ω)

then uh ⇀ u weakly in H10 (Ω).
The notion of G-convergence was introduced by Spagnolo [19]. For general

properties we refer to [3], [17], [21]. Here we only mention some fundamental
facts.
First, we recall the compactness ofM(K) with respect to G-convergence: given

a sequence {Ah} of operators in M(K), there exists an operator A ∈ M(K) and
a subsequence {Ahk

} G-converging to A. We also recall that G-convergence is
weaker than the L1loc-convergence of the coefficient matrices, and is not compa-

rable with the σ(L∞, L1) weak convergence of the coefficient matrices. In this
context, the result of [12] is illuminating: every operator A is the G-limit of a
sequence of isotropic operators Bh =

∑

i Di(βhDi). We conclude our summing

up the properties of G-convergence by recalling that, if Ah
G−→ A, then for ev-

ery F ∈ H−1(Ω), together with the convergence of the solutions uh, u, we have



Quasiharmonic fields and Beltrami operators 373

also convergence of the momenta and of the energy densities:
∑

ij ah
ijDjuh ⇀

∑

ij aijDju weakly in L2(Ω) and
∑

ij ah
ijDiuhDjuh ⇀

∑

ij aijDiuDju in D′(Ω).

We shall study G-convergence of operators A whose coefficient matrix is of the
form

(5.3) A =
1

K(x)
I +

(

K(x)− 1

K(x)

)

e ⊗ e

where K(x) ≥ 1, |e| = 1. In dimension n ≥ 3, it is easily seen that the structure
(5.3) of A as sum of a scalar matrix and a rank-one matrix is not preserved under
G-convergence.

Example. Here we construct a sequence of operatorsAh with diagonal coefficient
matrices of the form



















ah 0 ..... 0
0 ah ..... 0
. . . .
. . . .
. . . .

0 ..... 0
1

ah



















G-converging to an operator which is not of this type. We assume that

ah(x) =

n
∏

j=1

a
(j)
h (xj)

(where x = (x1, . . . , xn) ∈ Ω). In this case, there is a well known formula for the
G-limit ([23]). The coefficient matrix is diagonal















α1 0 ..... 0
0 α2 ..... 0
. . . .
. . . .
. . . .
0 ..... 0 αn















and the entries are given by

(5.4)



























αi = νi

∏

j 6=i

µj , i = 1, . . . , n − 1,

αn =
1

µn

1
∏

j 6=n

νj

,
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where

a
(j)
h

⇀ µj ,
1

a
(j)
h

⇀
1

νj
σ(L∞, L1)

for j = 1, . . . , n. Clearly we have νj ≤ µj .

For simplicity, we consider the case n = 3. For given positive numbers α1, α2,
α3, relations (5.4) read as

(5.5)











ν1µ2µ3 = α1

µ1ν2µ3 = α2

ν1ν2µ3 = 1/α3

and the conditions ν1 ≤ µ1, ν2 ≤ µ2 are equivalent to

(5.6) α2α3 ≥ 1, α1α3 ≥ 1.

A solution of system (5.5) is µ1 = µ2 = µ3 = (α1α2α3)
1

3 , ν1 = α
1

3

1 (α2α3)
− 2
3 ,

ν2 = α
1

3

2 (α1α3)
− 2
3 . We remark that on the coefficients of the G-limit we have

only the constrains (5.6), which do not imply the structure α1 = α2 = 1/α3. For
example, we can approximate the operator with constant coefficient matrix





1 0 0
0 2 0
0 0 3





by operators of type (5.3).

Now we assume that the dimension is n = 2. We consider a sequence [Bh, Eh]
of couples of vector fields on Ω ⊂ R

2, verifying for every h ∈ N the distortion
inequality

|Bh|2 + |Eh|2 ≥
(

K +
1

K

)

〈Bh, Eh〉

and divBh, curlEh belong to a compact set of H
−1(Ω). We consider the Beltrami

operators associated with [Bh, Eh], whose coefficient matrices are

Ah = A[Bh, Eh],

see Proposition 3.1. We also consider a couple [B, E] verifying 〈B, E〉 > 0 a.e. on
Ω and consider the Beltrami operator associated with it : A = A[B, E]. We have
the following
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Theorem 5.1. Under the above assumptions, if Bh ⇀ B and Eh ⇀ E weakly

in L2, then Ah
G−→ A.

By compactness, we can assume that (Ah) G-converges to an operator of class

M(K): Ah
G−→ A. So we have to show that A = A. This equality follows because

the coefficient matrices of both A and A verify (3.1); this is clear by definition
for A, see Section 3. On the other hand, it is known that AE = B. The equality
detA = 1 a.e. is proven in the following

Lemma 5.1. If Ah
G−→ A and detAh = 1 for any h ∈ N, then also detA = 1.

This is a particular case of a result from [6].

The proof we present follows an argument due to Tartar and presented in [5].

Proof: Let B a ball such that 2B ⊂ Ω, and let u, v ∈ H10 (2B) satisfy

∇u =

(

1
0

)

, ∇v =

(

0
−1

)

= R

(

1
0

)

in B.

For each h ∈ N, let uh, vh ∈ H10 (2B) be the solution to

divAh∇uh = divA∇u,

divAh∇vh = divA∇v.

As Ah
G−→ A, we have

∇uh ⇀ ∇u, ∇vh ⇀ ∇v

Ah∇uh ⇀ A∇u, Ah∇vh ⇀ A∇u

and then, by div-curl Lemma of Murat-Tartar ([16], [22]), we get

〈Ah∇uh, RtAh∇vh〉 → 〈A∇u, RtA∇v〉,
〈∇uh, Rt∇vh〉 → 〈∇u, Rt∇v〉,

in D′(Ω).

Finally, we note that, as detAh = 1 we have A−1
h
= RtAhR and hence

〈Ah∇uh, RtAh∇vh〉 = 〈∇uh, Rt∇vh〉.

Therefore we find
〈A∇u, RtA∇v〉 = 〈∇u, Rt∇v〉

which yields detA(x) = 1 for a.e.x ∈ B. �

We remark that Theorem 5.1 contains the result of Theorem 2 in [20].
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Remark. In particular, by Theorem 5.1, A[B, E] ∈ M(K), that is

(5.7) |B|2 + |E|2 ≥
(

K +
1

K

)

〈B, E〉.

More generally [4] it can be proved that if

|Bh|2 + |Eh|2 ≥
(

Kh +
1

Kh

)

〈Bh, Eh〉,

Bh ⇀ B, Eh ⇀ E, Kh ⇀ k in L1, then (5.7) holds.

Acknowledgment. The author wishes to thank Prof. Luigi Greco for useful
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