
Comment.Math.Univ.Carolin. 43,2 (2002)343–347 343

Remarks on extremally

disconnected semitopological groups

I.V. Protasov

Abstract. Answering recent question of A.V. Arhangel’skii we construct in ZFC an ex-
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All topological spaces under consideration are supposed to be Hausdorff.
A topological space X is called extremally disconnected if the closure of every
open subset of X is open. A topological space X without isolated points is called
maximal if X has an isolated point in any stronger topology. Every maximal
space is extremally disconnected. A group G provided with a topology τ is called
maximal if (G, τ) is maximal as a topological space.
A group G provided with a topology is called left (right) topological if all

mappings x 7→ gx, g ∈ G (x 7→ xg, g ∈ G) are continuous. A group G with a
topology τ is called semitopological if (G, τ) is left and right topological.
In [1] A.V. Arhangel’skii established some properties of extremally disconnected

semitopological groups and posed three problems.

Problem 1. Is there in ZFC an example of a non-discrete extremally discon-

nected topological group?

This is a reminiscence of old (and still unsolved) problem from [2]. It is worth
of mentioning that for some types of extremally disconnected topological groups
the answer to Problem 1 is negative. For example, if there exists a maximal
topological group, then there exists a P -point in ω∗, the reminder of the Stone-
Čech compactification of the discrete space ω ([4, Theorem 7.3]). For further
results in this direction see [5, Theorem 5.1], [7, Theorem 2.5] and [9].

Problem 2. Is there in ZFC an example of a non-discrete extremally discon-

nected semitopological group with continuous inverse?

Several kinds of such examples follow from [5] and [8]. We describe three of
them.
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By [5, Theorem 1.2], every infinite group G of cardinality α admits a maximal
left invariant topology τ of dispersion character α. Remind that the dispersion
character of a topological space (X, τ) is the cardinal ∆(τ) = min{|U | : U ∈
τ, U 6= ∅}. If G is Abelian then (G, τ) is semitopological. If G is Boolean (g2 = e
for every g ∈ G, e is the identity of G) then (G, τ) is a semitopological group
with continuous inverse. Note that a maximal left topological group need not be
regular. However, every countable group admits a maximal regular left invariant
topology ([5, Corollary 2.7]). It is still unknown ([5, Problem 2.10]) whether there
is in ZFC an example of a regular maximal left topological group of uncountable
dispersion character.
By [5, Theorem 1.3 and 4.5], every infinite group G admits an extremally

disconnected left invariant topology τ such that (G, τ) is zero-dimensional (i.e.
every point of G has base of neighborhoods consisting of clopen subsets) and left
totally bounded (i.e. for every neighborhood U of the identity, there exists a finite
subset F with G = FU). By the above argument, there is a zero-dimensional
example to Problem 2 of arbitrary dispersion character.
Let τ , τ ′ be left invariant topologies on a group G. We say that (G, τ ′) is an

open refinement of (G, τ) if τ ⊆ τ ′ and every nonempty open subset from (G, τ ′)
contains a nonempty open subset from (G, τ). By [8], every left topological group
(G, τ) has an extremally disconnected open refinement. If (G, τ) is regular, then
there exists a zero-dimensional extremally disconnected open refinement (G, τ ′).
Now suppose that, for every element g ∈ G, there exists a neighborhood U of
identity in τ such gx = xg for each x ∈ U . Then every open refinement (G, τ ′) of
(G, τ) is a semitopological group. In addition, if the subset {g : g2 = e} is open
in (G, ), then the mapping x 7→ x−1 is continuous in (G, τ ′).

Problem 3. Let G be an extremally disconnected semitopological group with
continuous inverse. Does there exist an open and closed Abelian subgroup of G?

There are two reasons for considering this problem. By Malykhin’s theorem [1,
Theorem 2], every extremally disconnected topological group has a clopen Boolean
subgroup. By [1, Theorem 3], for every non-discrete extremally disconnected
semitopological group with continuous inverse, there exists a neighborhood U
of the identity e such that g2 = e for every g ∈ U . In one special case this
problem has been mentioned in [6]: does every maximal semitopological group
with continuous inverse contain an open Boolean subgroup?

The following two theorems give us a negative answer to Problem 3.

Theorem 1. For every infinite cardinal α, there exists a semitopological group
(G, τ) with continuous inverse and following properties: ∆(τ) = α, (G, τ) has no
open Abelian subgroups, (G, τ) is extremally disconnected and zero-dimensional.

Theorem 2. For every infinite cardinal α, there exists a maximal semitopological
group (G, τ) with continuous inverse such that ∆(τ) = α and (G, τ) has no open
Abelian subgroups.
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To prove these theorems we need some definitions, constructions and results
from [3], [5].
Given a discrete space X , we take the points of βX , the Stone-Čech compac-

tification of X , to be the ultrafilters on X , with the points of X identified with
the principal ultrafilters. The topology of βX can be defined by stating that the
sets of the form {p ∈ βX : A ∈ p}, where A is a subset of X , form a base for the
open sets. We note that the sets of this form are clopen and that, for any p ∈ βX
and any A ⊆ X , A ∈ p if and only if p ∈ A, where A is a closure of A in βX . If
A is a subset of X we shall use A∗ to denote A \ A, in particular X∗ is a set of
all free ultrafilters on X . For every filter ϕ on X denote ϕ = {p ∈ βX : ϕ ⊆ p},
ϕ∗ = ϕ ∩ G∗.
Let G be a discrete group. There are two natural ways for extension of mul-

tiplication from G to βG. We follow [3, Chapter 4]. Given any p, q ∈ βG and
A ⊆ G, put

A ∈ pq if and only if {g ∈ G : g−1A ∈ q} ∈ p.

Take any member P ∈ p and, for every x ∈ P , choose some element Qx ∈ q.
Then

⋃
X∈P xQx ∈ pq and the family of subsets of this form is a base of the

ultrafilter pq. This multiplication on βG is associative, so βG is a semigroup and
G∗ is a subsemigroup of βG.
Every closed subsemigroup of βG has an idempotent p, p2 = p ([3, Theo-

rem 2.5]). Given any idempotent p ∈ G∗, the family of subsets {P ∪ {e} : P ∈ p}
is a filter of neighborhoods of e for the uniquely determined maximal left invariant
topology on G ([5, §1]). A group G provided with this topology is denoted by
G(p). We need also another type of topologies determined by idempotents. Fix
p ∈ G∗ with p2 = p and, for every subset A ⊆ G, put cl(A, p) = {x ∈ G : A ∈ xp}.
Then the family {cl(A, p) : A ∈ p} is a base of neighborhoods of e for the uniquely
determined zero-dimensional extremally disconnected left invariant topology on
G ([5, §1]). A group G provided with this topology is denoted by G[p].
Let X be an infinite set of cardinality α. For every permutation f of X , put

supp f = {x ∈ X : f(x) 6= x}. Consider the group S(X) of all permutations of X
with finite supports. For every nonempty subset Y ⊆ X , identify S(Y ) with the
subgroup of all permutations f ∈ S(X) such that f(x) ∈ Y , x ∈ Y and f(x) = x,
x ∈ X \ Y . The identity permutation is denoted by e.
Let F = {Y ⊆ X : X \ Y is finite} be a filter of all cofinite subsets of X .

Denote by ϕ0 the filter on S(X) with base {S(Y ) : Y ∈ F}. Note that ϕ∗

0 is a
subsemigroup of βS(X) and

(∗) for every f ∈ S(X), there exists F ∈ ϕ such that fg = gf for every g ∈ F .

Put S2(X) = {g ∈ S(X) : g2 = e} and denote by ϕ2 the filter on S(X) with
the base {F ∩ S2(X) : F ∈ ϕ0}. By (∗), ϕ

∗

2 is a subsemigroup of βS(X).
Call a subset A ⊆ S(X) sparse if there exists x ∈ X such that |{g(x) : g ∈

A}| = α. A filter ϕ′ on S(X) is called sparse if every member of ϕ′ is sparse.
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Clearly, ϕ2 is a sparse filter. By Zorn’s Lemma, for every sparse filter ϕ′, there
exists a sparse ultrafilter p with ϕ′ ⊆ p. Hence, the subset SP of all sparse
ultrafilters from ϕ∗

2 is nonempty. Clearly, SP is closed in βS(X). For every
sparse subset A ⊆ S(X) and every f ∈ S(X), the subset fA is sparse. It follows
that SP is a subsemigroup of βS(X). We shall use the following claim

(∗∗) for every sparse subset A ⊆ S(X), there exist h, g ∈ A such that hg 6= gh.

To prove (∗∗), choose x ∈ X such that the subset {f(x) : f ∈ A} is infinite.
Fix any h ∈ A with h(x) 6= x and pick g ∈ A such that g(x) /∈ supp h. Since
hg(x) = g(x) and h(x) 6= x, then hg(x) 6= gh(x) so hg 6= gh.

Proof of Theorem 2: Put G = S(X) and choose any idempotent p ∈ SP .
Consider the maximal left topological group (G, τ) = G(p). Since p is sparse then
∆(τ) = α. Since ϕ2 ⊆ p then, by (∗), (G, τ) is right topological with continuous
inverse. By (∗∗), (G, τ) has no open Abelian subgroups. �

Proof of Theorem 1: PutG = S(X) and choose any idempotent p ∈ SP . Con-
sider the extremally disconnected zero-dimensional left topological group (G, τ) =
G[p]. Clearly, ∆(τ) = α. Denote by τe the filter of neighborhoods of e in τ . For
every ultrafilter q on G, τe ⊆ q if and only if qp = p ([5, §2]). By (∗) and the defi-
nition of product of ultrafilters, ϕ2 ⊆ τe. By the above paragraph, (G, τ) is right
topological with continuous inverse and (G, τ) has no open Abelian subgroups.

�

We conclude the paper with four remarks.

1. Using arguments from [5, §2], we can add the following statement to Theo-
rem 2: there exists a countable zero-dimensional maximal semitopological group
with continuous inverse and without open Abelian subgroups.

2. A topological space S is called strongly extremally disconnected if, for every
open nonclosed subset U of S, there exists x ∈ cl U \ U such that {x} ∪ U is a
neighborhood of x. Let (G, τ) be a left topological group and let an ultrafilter q
converge to the identity in τ . By [8, Theorem 4.12], the strongest left invariant
topology τq on G in which q converges to e is strongly extremally disconnected.
Put G = S(X) and denote by τ the left invariant topology on G such that ϕ2 is
a filter of neighborhoods of e. Choose any ultrafilter q ∈ SP . Then (G, τq) is a
particular example to Problem 3.

3. The group S(X) has been used in [5, Example 6.2] to prove the following
statement. Let B be a non-discrete extremally disconnected topological Abelian
group. Then there exists an extremally disconnected topological group G with
distinct left and right uniformities such that B is topologically isomorphic to some
open subgroup of G.
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4. A group G with a topology τ is called paratopological if the multiplication
(x, y) 7→ xy is jointly continuous in G. By [8], every maximal paratopological
group is a topological group. LetG be an extremally disconnected paratopological
group. Is G a topological group?

References

[1] Arhangel’skii A.V., On topological and algebraic properties of extremally disconnected
semitopological groups, Comment. Math. Univ. Carolinae 42.4 (2000), 803–810.

[2] Arhangel’skii A.V., Groups topologiques extremalement discontinus, C.R. Acad. Sci. Paris
265 (1967), 822–825.

[3] Hindman N., Strauss D., Algebra in the Stone-Čech Compactification: Theory and Appli-
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