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On the intrinsic geometry of a unit vector field

A. YAMPOLSKY

Dedicated to Professor Oldrich Kowalski on the occasion of his 65th birthday

Abstract. We study the geometrical properties of a unit vector field on a Riemannian
2-manifold, considering the field as a local imbedding of the manifold into its tangent
sphere bundle with the Sasaki metric. For the case of constant curvature K, we give
a description of the totally geodesic unit vector fields for K = 0 and K = 1 and prove
a non-existence result for K # 0,1. We also found a family &, of vector fields on the
hyperbolic 2-plane L? of curvature —c? which generate foliations on T} L? with leaves

2
of constant intrinsic curvature —c? and of constant extrinsic curvature —%.
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Introduction

A unit vector field £ on a Riemannian manifold M is called holonomic if £ is a
field of normals of some family of regular hypersurfaces in M and non-holonomic
otherwise. The geometry of non-holonomic unit vector fields has been developed
by A. Voss at the end of the 19-th century. The foundations of this theory can
be found in [1]. Recently, the geometry of a unit vector field has been considered
from another point of view. Namely, let 71 M be the unit tangent sphere bundle
of M endowed with the Sasaki metric ([9]). If £ is a unit vector field on M, then
one may consider £ as a mapping £ : M — T1 M so that the image £(M) is a
submanifold in 77 M with the metric induced from 77 M. So, one may apply the
methods from the study of the geometry of submanifolds to determine geometrical
characteristics of a unit vector field. For example, the unit vector field £ is said to
be minimal if £(M) is of minimal volume with respect to the induced metric ([6]).
A number of examples of locally minimal unit vector fields has been found (see
[2], [3], [7])- On the other hand, using the geometry of submanifolds, we may find
the Riemannian, Ricci or scalar curvature of a unit vector field using the second
fundamental form of the submanifold {(M) € T3 M found in [11]. In this paper
we apply this approach to the simplest case when the base space is 2-dimensional
and hence the submanifold {(M) € T1 M is a hypersurface.
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300 A. Yampolsky

2. The results

Let £ be a given unit vector field on a 2-dimensional Riemannian manifold
(M, g). Denote by eg a unit vector field such that V¢, = 0. Denote by e a unit
vector field, orthogonal to eg, such that

vfilé- = )‘777

where 7 is a unit vector field, orthogonal to £. The function A is a signed singular
value of a linear operator V& : TM — &+ (acting as (V€)X = Vx&). Set

V5§=k77, Vpn=ké.

The functions k and k are the signed geodesic curvatures of the integral curves
of the fields ¢ and 7 respectively. We prove that A2 = k2 + k2.

Denote the signed geodesic curvatures of the integral curves of the fields eg
and e; as p and o respectively. Then

Vegeo =pe1, Ve el =oeg.

The orientations of the frames (£,7) and (eg, e1) are independent. Set s = 1 if
the orientations are coherent and s = 0 otherwise.
The following result (Lemma 3.2) is a basic tool for the study.

Let M be a 2-dimensional Riemannian manifold of Gaussian curvature K.

The second fundamental form Q of the submanifold E(M) C T1 M is given by

A +1K | eo(N)
0| Thvime  CUTeAigm
B (_1)s+1K + eo(N) e A
2 0 1+A2 L\ Ve

Using the formula for the sectional curvature of 71 M™, we find an expression
for the Gaussian curvature of £(M?) (Lemma 3.4).

The Gaussian curvature K¢ of a hypersurface (M) € Ty M is given by

A
1+ 220

| | i K e\
+2“81<1+A2) <( Vst

where K is the Gaussian curvature of M.

:K_2 K(1-K)

K il S _18+1
=7 toe D

(K)

As applications of these lemmas, we prove the following theorems.
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Theorem 1. Let M? be a Riemannian manifold of constant Gaussian curvature
K. A unit vector field & generating a totally geodesic submanifold in Ty M? exists
if and only if K =0 or K = 1. Moreover,

(a) if K =0, then & is either a parallel vector field or moving along a family
of parallel geodesics with constant angle speed. Geometrically, &(M?) is
either M? imbedded isometrically into M? x S' as a factor or a (helical)
flat submanifold in M? x S1;

(b) if K =1, then ¢ is a vector field on a standard sphere S 2 which is parallel
along the meridians and moving along the parallels with a unit angle speed.
Geometrically, £(M 2) is a part of totally geodesic RP? locally isometric

som

to the sphere S? of radius 2 in T, 52 " RP3.
Theorem 2. Let M2 be a 2-dimensional Riemannian manifold of Gaussian cur-

vature K. Suppose that & is a unit geodesic vector field on M?2. Then the
submanifold &(M?) C T{M? has non-positive extrinsic curvature.

Theorem 3. Let M? be a space of constant Gaussian curvature K. Suppose
that € is a unit geodesic vector field on M?. Then £(M?) has constant Gaussian
curvature in one of the following cases:

(a) K = —c® < 0 and ¢ is a normal vector field for the family of horocycles
on the hyperbolic 2-plane L? of curvature —c?. In this case, K¢ = —c2
and therefore &(M?) is locally isometric the base space;

(b) K = 0 and ¢ is a parallel vector field on M?. In this case K¢ = 0 and
&(M?) is also locally isometric to the base space;

(¢) K =1 and ¢ is any (local) geodesic vector field on the standard sphere
S2. In this case, K¢ =0.

The case (a) of Theorem 3 has an interesting generalization of the following
kind.

Theorem 4. Let L? be a hyperbolic 2-plane of constant curvature —c?. Then
T1L? admits a hyperfoliation with leaves of constant intrinsic curvature —c? and

2
of constant extrinsic curvature — . The leaves are generated by unit vector fields
making a constant angle with a pencil of parallel geodesics on L?.

2. Basic definitions and preliminary results

Let (M, g) be an (n+ 1)-dimensional Riemannian manifold with metric g. Let

V denote the Levi-Civita connection on M. Then V x¢ is always orthogonal to £
and hence, (V&)X def Vx&:TpyM — {f; is a linear operator at each p € M. We

define an adjoint operator (V&)* X : ff; — TpM by

(VO*X,Y), = (X, Vy§),.
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Then there is an orthonormal frame eg,e1,...,e, in T, M and an orthonormal
frame f1,..., fn in & such that

(1) (V&eo =0, (V&ea =afa, (VE)* fa = Aaca, a=1...n,
where Aq, A\g, ...\ are real-valued functions.

Definition 2.1. The orthonormal frames satisfying (1) are called singular frames
for the linear operator (V¢) and the real valued functions Aq, Mg, ... Ay, are called
the (signed) singular values of the operator V& with respect to the singular frame.

Remark that the sign of the singular value is defined up to the directions of
the vectors of the singular frame.
For each X € T(p’E)TM there is a decomposition

X = X+ X3,

where (-)" and (-)? are the horizontal and vertical lifts of vectors X1 and X3 from
TpM to T(y, ¢)T'M. The Sasaki metric is defined by the scalar product of the form

(X,Y)) = (X1,Y1) + (X2, Y2),
where (-, -) means the scalar product with respect to metric g.
The following lemma has been proved in [11].
Lemma 2.1. At each point (p,§) € &(M) C TM the vectors

~ h
€y = 60,

2 - 1
2) eazi(eg—l—)\afg), a=1,...,n,

V1I+ M2

form an orthonormal frame in the tangent space of {(M) and the vectors

1
(3) fig| = ———=(— Aol + f¥), o=1,...,n,

ol m(

form an orthonormal frame in the normal space of £(M).

Let R(X,Y){ = [Vx, Vy] =V x y] { be the curvature tensor of M. Introduce
the following notation

(4) (X, Y)§ = VxVy€& - Vy,vé

Then, evidently,
R(X,Y), =r(X,Y)¢ —r(Y,X)E.

The following lemma has also been proved in [11].
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Lemma 2.2. The components of second fundamental form of £(M) C Ty M with
respect to the frame (3) are given by

1
Qs100 = \/T—/\?r<r

1 1
IV Py
+ Ao Aa(Rlca, €0)é, fa)),

[(r(earep)t +rep calé, fo)

(€0, €0)&, fo),

Q

[(r(care0)t +r(eo, calé, fo)

) 1 1
olaB = 5
° 2 @+ )+ 31 +A)

+ )\Oc)\O'<R(eUu 65)5, foe> + )\ﬁ)\0'<R(eUu ea)é, fﬁ>} )

where {eg,e1,...,en; f1,-.., fn} is a singular frame of (V§) and A\1,...,\, are
the corresponding singular values.

Let V and V be the Levi-Civita connections of the Sasaki metric of TM and the
metric of M respectively. The Kowalski formulas [8] give the covariant derivatives
of combinations of lifts of vector fields.

Lemma 2.3 (O. Kowalski). Let X and Y be vector fields on M. Then at each
point (p, &) € TM we have

V¥ = (V) = S (RX V)P

~ 1

VY = 5 (R(EY)X)" + (VxY)",
~ 1

VoY = o (R(E&X)V)",

VoYV =0,

where R is the Riemannian curvature tensor of (M, g).

This basic result allows to find the curvature tensor of TM (see [8]) and the
curvature tensor of 71 M (see [4]). As a corollary, it is not too hard to find an
expression for the sectional curvature of Ty M. It is well-known that £V is a unit
normal for Ty M as a hypersurface in 7M. Thus, X = X{‘ + XJ is tangent to
T1 M if and only if (X5,¢) = 0.

Let X = X{‘—i—Xﬁ’ and Y = Ylh +Yy, where Xo,Y5 € &L, form an orthonormal
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base of a 2-plane & C T, ()71 M. Then we have ([5]):

R(7) = (R(X1,Y1)Yi, X1) — S| R(X1, Va)e]?

) + IR Y2) X1+ BE Xa Wil + | Xal 2 Vall? — (X2, ¥2)?
+ 3(R(X1,Y1)Y2, X2) — (R(§, X2) X1, R(£,Y2)Y1)
+{((Vx,R)(&,Y2)Y1, X1) + ((Vy, R) (£, X2) X1, Y1).

Combining the results of Lemma 2.1, Lemma 2.2 and (5), we can write an
expression for the sectional curvature of {(M).

Lemma 2.4. Let X and Y be an orthonormal vectors which span a 2-plane
tangent to {(M) C T1M. Denote by K¢(7) the sectional curvature {(M) with
respect to the metric induced by Sasaki metric of T1M. Then

(6) Ke(7) = K(7) + Y (2(%, 09,7, 7) - 0%(X,17)).

where K (%) is the sectional curvature of TyM given by (5), ), are the com-

ponents of the second fundamental form of (M) given by Lemma 2.2 and the
vectors are given with respect to the frame (2).

3. The 2-dimensional case

Let M be a 2-dimensional Riemannian manifold. The following proposition
gives useful information about the relation between the singular values of the
(V&)-operator, geometric characteristics of the integral curves of singular frame
and the Gaussian curvature of the manifold.

Lemma 3.1. Let £ be a given smooth unit vector field on M?. Denote by eq a
unit vector field on M? such that Veo& = 0. Let y and ey be the unit vector fields
on M? such that (¢,n) and (eq,e1) form two orthonormal frames on M?. Denote
by X\ a signed singular value of the operator (V). Then we have

Velg = )\775

and the following relations hold:

(a) if k = <V5§,77> is the signed geodesic curvature of a £-curve and k =
<V,777, 13 > is the signed geodesic curvature of an n-curve, then

A2 = k2 4+ k2
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(b) if K is the Gaussian curvature of M?, then
(—1)°K = eg(A) — Ao,
where o = <Ve1€1, eo> is the signed geodesic curvature of an eq-curve and

1 if the frames (§,7n) and (eg,e1) have the same orientation,
~ | 0 if the frames (£,n) and (e, e1) have an opposite orientation.

PROOF: (a) If (¢, 7) is an orthonormal frame on M?, then

vﬁé.:kna vﬁn:_kfv

(7) Vpé=—kn, Vyn==ké§.

Geometrically, the functions k£ and x are the signed geodesic curvatures of &- and
n-curves respectively.
In a similar way we get

Ve()eo = Hel, Ve()el = —pneq,
(8) Ve, €0 = — \Y% =
e1¢0 — ogeq, 6181_0605
where p and o are the signed geodesic curvatures of the eg- and ej-curves respec-
tively.
Let w be an angle function between ¢ and eg. Then we have two possible
decompositions:

eg = coswé +sinwn, Ox( eg = coswé +sinwn,
r(—
e1 = —sinw & + cosw 1,

Or(+) {

e1 =sinwé& —coswn.
In the case Or(+) we have

Veo & = (kcosw — ksinw) 7,

Ve, € = —(ksinw + K cosw) 1,
and due to the choice of eg and e; we see that

{kcosw—msinw = 0,

ksinw+ kcosw = —A\.

So, for the case of Or(+), k = —Asinw, k= —Acosw.
In a similar way, for the case of Or(—), k = Asinw, k= Acosw. In both cases

A2 = k2 4 k2.
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(b) Due to the choice of the frames,

<R(60’ 61)5’ 77> = <V60V61€ - v61v60£ - VVeoEl—Veleoga 77>
= <V60()\ 77) - V—H€O+0' el €7n> = 60()\) — Ao
On the other hand,

—K for the case of Or(+),

(9) (R(eo, e1)€,m) = { +K for the case of Or(—).

Set s = 1 for the case Or(+) and s = 0 for the case Or(—). Combining the results,
we get (—1)°K = eg(A) — Ao, which completes the proof. O

The result of Lemma 2.2 can also be simplified in the following way.

Lemma 3.2. Let M be a 2-dimensional Riemannian manifold of Gaussian curva-
ture K. In terms of Lemma 3.1 the second fundamental form of the submanifold
&(M) C T1M can be presented in two equivalent forms:

(i)
A
Q _ K vV 1—‘,—)\2

+1K | eo(N) A
S N oy el (\/1+>\2)

Q- T b (ox+130e0)
%(0A+};§560(A)) el(ﬁ)

PROOF: At each point (p,§) € £(M) the vectors

g = 66‘,
~ 1 h
€1 = /1+>\2 (61 + )\nv)

form an orthonormal frame in the tangent space of £(M) and

ﬁ:é(—)\e}f—knv ),

V14 )2

is a unit normal for (M) C T4y M.
Thus we see that in a 2-dimensional case the components of €2 take the form

B
1+ 2232

% 1 4_1)\2 {<T(61, e0)€ + r(eg, e1)é, 77> + )\2<R(el, e0)é, 77>} .

(617 61)55 77>7

1
Qoo = ——=(r(eg,€e0)&,n), O =
00 1+)\2< (e0,€0)é,n) 11
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Keeping in mind (4), (8) and (9), we see that

(r(eo,e0)é,n) = —pX,  (r(eo,e1)&,n) = eo(N),
<T(€1, 60)5777> = U)‘7 <T(€1, 61)5777> = el()‘)v
(R(eg,e1)é,m) = (—1)°K.
So we have
- A aly A
= = e ()
(_1)s+15 + e0(>\g
(eo(N) + Ao~ (1K) = { R
L (UH Q—Ageo(x))

where Lemma 3.1(b) has been applied in two ways. O

1
O P —
L= 91 +22)

3.1 Totally geodesic vector fields

The main goal of this section is to prove Theorem 1. The proof will be divided
into a series of separate propositions.

Proposition 3.1. Let M? be a Riemannian manifold. Let D be a domain in M?
endowed with a semi-geodesic coordinate system such that ds? = du® + f2 dv?,
where f(u,v) is some non-vanishing function. Denote by (eg,e1) an orthonormal
frame in D and specify eg = Oy, e1 = f10,. If £ is a unit vector field in D
parallel along u-geodesics, then & can be written given as

¢ =cosweqg +sinwer,

where w = w(v) is an angle function and
(a) a singular frame for £ may be chosen as {eo, €1, = —sinw eg+cosw ey };
(b) a singular value for £ in this case is A = ej(w) — o, where o is a signed
geodesic curvature of the ej-curves.

PROOF: Indeed, if £ is parallel along u-geodesics, then evidently the angle function
w between £ and the wu-curves does not depend on u. So this function has the
form w = w(v) and £ = cosw eg + sinw e1. Moreover, since

Veoeo =0, Veoe1 =0,
f
Veie0 = 7”61, Ve,e1 = —7u€0,
we see that o = —f—f and Ve, & = (e (w) — o)mn, where n = —sinw eg + coswey.

Therefore, A = e1(w) — ¢ and the proof is complete. O
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Proposition 3.2. Let M? be a Riemannian manifold of constant negative cur-
vature K = —r—2 < 0. Then there is no totally geodesic unit vector field on M?.

PROOF: Suppose £ is a totally geodesic unit vector field on M?2. Set Q = 0 in
Lemma 3.2. Then A\x = 0. If A = 0 in some domain D C M?2, then ¢ is parallel
in this domain and hence M? is flat in D, which contradicts the hypothesis.
Suppose that ;2 = 0 at least in some domain D C M?2. This means that eg-curves
are geodesics in D and the field ¢ is parallel along them. Choose a family of
eg-curves and the orthogonal trajectories as a local coordinate net in D. Then
the first fundamental form of M? takes the form

ds? = du® + 2 dv?,

where f(u,v) is some function. Since M? is of constant curvature K = —%2, the
function f satisfies the equation

1
Juu — _2f =0.
r
The general solution of this equation is
f(u,v) = A(v) cosh(u/r) + B(v) sinh(u/7).
There are two possible cases:
(i) A%(v) = B%(v) over the whole domain D:;
(ii) A2(v) # B?(v) in some subdomain D’ C D.
Case (i). In this case, in dependence of the signs of A(v) and B(v),
flu,v) = A@)e™" or  f(u,v) = A(v)e /"

Consider the first case (the second case can be reduced to the first one after the
parameter change u — —u). Making an evident v-parameter change, we reduce
the metric to the form

ds? = du? + r2e2W/" g2,
Applying Proposition 3.1 for f = ret/T . we get A = %(w’e‘“/’" + 1). Setting
Q11 =0, we see that e;(\) = 0. Hence w”’ = 0, i.e., w = av + b. Therefore,
1
A== (ae_u/r + 1) .

r

Considering g1 = 0 (with s = 1 because of Or(+)-case), we get

1. Legae™m+1) (G A D)(ae T +1)% —aPe Iy
2r2 14 7%(e—u/ra + 1)2 2r2[1 + T%(ae—“/r T 1)2] )
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and hence, this case is not possible.

Case (ii). Choose a subdomain D’ C D such that A%(v) < B?(v) or A%(v) >
B?(v) over D'. Then the function f may be presented respectively in two forms:
(a) f(u,v) =vB2— A2 sinh(u/r 4+ ) or
() f(u,v) = VA2 — B2 cosh(u/r + 6),
where 6(v) is some function.

Consider the case (a). After a v-parameter change, the metric in D’ takes the
form
ds? = du® + 1% sinh?(u/r + 0) dv?.

Applying Proposition 3.1 for f = rsinh(u/r + 6), we get

wl

1
= ————— + —coth 0).
r sinh(u/r 4 0) + r (u/r +6)
Considering Q11 = 0, we have e1(\) = 0 which implies the identity
W sinh(u/r 4+ 0) — '@’ cosh(u/r +6) — 6 = 0.

From this we get w” = 0, 6 = 0 and hence {9=_Const,
w=av+b

parameter change we reduce the metric to the form

(a,b = const). After a

ds? = du? + r% sinh?(u/r) dv?.

Applying Proposition 3.1 for f = rsinh(u/r), we get A = %}m The

substitution into g1 gives

1 (T,% +1)[a + cosh(u/7)]? — a® + 1
2 72sinh?(u/r) + [a + cosh(u/7)]?

3

which completes the proof for the case (a).

The case (b) consideration gives w = av +b, X = %}W and Qo1 =

1 (T%+1)[a+sinh(u/r)}2—a2—
2 r2 cosh? (u/r)+[a+sinh(u/r)]

1
5 # 0, which completes the proof. O

Proposition 3.3. Let M? be a Riemannian manifold of constant positive cur-
vature K = =2 > 0. Then a totally geodesic unit vector field £ on M? exists
if ¥ =1 and ¢ is parallel along the meridians of M? locally isometric to S2
and moves along the parallels with a unit angle speed. Geometrically, £&(M 2)
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is a part of totally geodesic RP? locally isometric to sphere S? of radius 2 in
7,52 “Z" RP3.

PROOF: Suppose £ is a totally geodesic unit vector field on M2. The same
arguments as in Proposition 3.2 lead to the case p = 0 at least in some domain
D C M?2. So, choose again a family of ep-curves and the orthogonal trajectories
as a local coordinate net in D. Then the first fundamental form of M? can be
expressed as ds? = du® + f2 dv?, where f(u,v) is some function. Since M? is of
constant curvature K = r~2, the function f satisfies the equation

1
fuu+_2f:0-
r

The general solution of this equation f(u,v) = A(v) cos(u/r)+ B(v) sin(u/r) may
be presented in two forms:

(a) f(u,v) = VA2 + B2 sin(u/r +6) or

(b)) f(u,v) = VAZ + B2 cos(u/r + 6),
where 6(v) is some function.

Consider first, the case (a). After v-parameter change, the metric in D takes
the form
ds? = du® + 1% sin? (u/r + ) dv?.

Applying Proposition 3.1 for f = rsin(u/r + 6), we get

wl

1
)\ = W + ;COt(’U,/T—FH)

Setting Q11 = 0, we find ej(A\) = 0 which implies the identity
W sin(u/r + 0) — '8 cos(u/r+0) + 6 = 0.

f=const,
w=av+b
suitable u-parameter change, we reduce the metric to the form

From this w” = 0, ¢ = 0 and we have again { a,b = const. After a

ds? = du® + 1% sin? (u/r) dv®

a+cos(u/r)

s/ - Substitution

Applying Proposition 3.1 for f = rsin(u/r), we get A =
into g1 gives
1 (%2 — 1)[a + cos(u/r)]> +a® — 1

2 r2sin2(u/r) + [a + cos(u/r)]2

=0,
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which is possible only if » = 1 and |a| = 1. So, we obtain to the standard sphere
metric

ds® = du® + sin u dv?

and (after the +v + b — v parameter change) the unit vector field

This vector field is parallel along the meridians of S2 and moves helically along
the parallels of S? with unit angle speed.

a—sin(u/r)

r cos(u/r) and

For the case (b) one can find w =av+b, A=

1 (T% —1[a —sin(u/r)]? +a® -1 B
Qo1 = 2 r2cos2(u/r) + [a — sin(u/r)]2 0,

which gives r = 1 and |a| = 1 as a result. Thus, we have a metric
ds? = du® + cos® u dv?

sinv
7 cosu

and a vector field £ = {cosv } It is easy to see that the results of cases (a)

and (b) are geometrically equivalent.

Introduce the local coordinates (u,v,w) on T} 52, where w is the angle between
arbitrary unit vector £ and the coordinate vector field X; = {1,0}. The first
fundamental form of 7752 with respect to these coordinates is [10]

d3? = du? + dv? + 2cosudvdw + dw?.

The local parameterization of the submanifold £(S 2), generated by the given field,
is w = v and the induced metric on £(S52) is

d3? = du® + 2(1 + cosu) dv? = du® + 4 cos® u/2 dv?.

Thus, £(S?) is locally isometric to sphere S? of radius 2. Since T7.52 “Z" RP3
and there are no other totally geodesic submanifolds in RP3 except RP?, we see
that £(S?) is a part of RP2. So the proof is complete. O

Proposition 3.4. Let M? be a Riemannian manifold of constant zero curvature
K = 0. Then a totally geodesic unit vector field & on M? is either parallel or moves
along the family of parallel geodesics with constant angle speed. Geometrically,
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€(M?) is either E? imbedded isometrically into E? x S1 as a factor or a helical
flat submanifold in E? x S*.

PROOF: Suppose ¢ is a totally geodesic unit vector field on M2. Set Q = 0 in
Lemma 3.2. Then A = 0. If A = 0 over some domain D C M?2, then ¢ is parallel
in this domain.

Suppose A Z 0 in a domain D C M2. Then p = 0 on at least a subdomain
D' C D. This means that the ep-curves are geodesics in D’ and the field ¢ is
parallel along them. Choose a family of eg-curves and the orthogonal trajectories
as a local coordinate net in D’. Then the first fundamental form of M? takes
the form ds? = du? + f2dv? and since M? is of zero curvature, f satisfies the
equation

A general solution of this equation is f(u,v) = A(v)u + B(v). There are two
possible cases:

(a) A(v) # 0 in some subdomain D" C D’;
(b) A(v) = 0 over the whole domain D’.

Case (a). The function f may be presented over D" in the form
flu,v) = A(v)(u + 6),

where 0(v) = B(v)/A(v). After a v-parameter change, the metric in D" takes the
form ds® = du® + (u + 0)? dv®. Applying Proposition 3.1 for f = u + 6, we get
A= W +1

gy Setting 211 = 0, we obtain the identity

(w4 0) — (W +1)8 =0.

From this we get {::j”:=_01 or {c;’,’::(? . In the first case, A = 0 and the field £ is

6=const,
w=av+b
Making a parameter change, we reduce the metric to the form

parallel again. In the second case { a,b = const.

ds? = du? + u? dv?.

Applying Proposition 3.1 with f(u,v) = u, we get A = CLT'H The substitution
into g1 gives the condition

a+1

S —— |
u2 + (a+1)2

which is possible only if « = —1. But this means that again A = 0 and hence £ is
a parallel vector field.



On the intrinsic geometry of a unit vector field

Case (b). After a v-parameter change, the metric takes the form
ds® = du® + dv?.
Applying Proposition 3.1 for f = 1, we get A = w’. Setting Q11 = 0, we find
w"” = 0. This means that w = av + b and ¢ is either parallel along the u-lines
(a = 0) or moves along the u-lines helically with constant angle speed.
Let (u,v,w) be the standard coordinates in E2?x S1. Then the first fundamental

form of E2 x S1 is

5% = du® + dv® + dw?.
If a = 0, then with respect to these coordinates the local parameterization of
£(FE?) is w = const and £(E?) is nothing else but E? isometrically imbedded into
E2 x S1. If a # 0, then the local parameterization of {(Ez) is w = av+ b and the
induced metric is

d3% = du® + (1 + a?) dv?
which is flat. The imbedding is helical in the sense that this submanifold meets
each flat element of the cylinder p : E2 x S1 — S! under constant angle ¢ =

1 .

areeos ——s. So the proof is complete. O

3.2 The curvature

The main goal of this section is to obtain an explicit formula for the Gaussian
curvature of £(M?) and apply it to some specific cases. The first step is the
following lemma.

Lemma 3.3. Let £ be a unit vector field on a 2-dimensional Riemannian mani-
fold of Gaussian curvature K. In terms of Lemma 3.1, the sectional curvature
K, 0(§) of Ty M along 2-planes tangent to (M) is given by

_K?*  K(1-K)

K = + 2 4+ (-1 L ep(K).
M (§) 1 112 (=1) 1 )\260( )

. ~ v — h YA 1 h
PROOF: Let 7 be a 2-plane tangent to {(M). Then X = e and Y = e (e7 +

AnY) form an orthonormal basis of 7. So we may apply (5) setting X1 = e,

1 A
X2 =0, Y1 = ==ze1, Y2 = 2557
We get
(R(X1,Y1)Y1,X1) = L<R(60 e1)e1,eq) = 1k
) ) 1 +)\2 ) ? 1 +)\2 )
1 1
R(X1,Y1)¢|1? = R 2 K?
[R(X1, Y1) e | R(eo, e1)é]| e K
2 A2 2 2o
R(£,Y9) X =———|R = K
|R(E, Yo) X1l Y [1R(&; meoll o2 K5

(V3 B)E VaVE, X1) = 13 (Ve R)Emen, o) = —(—1)° 155 co(K),
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where K is the Gaussian curvature of M. Applying directly (5) we obtain

1 3 A2K?2
Koy 01 (€) (K B MET

_ _1\s+1
= 1+)\2 1 1 +( 1) )\eo(K))

2 2
=T +1/\2 (K(l - K)+ A+ AR +Z )& + (—1)8+1/\60(K)>
K? KO1-K s A
T T U ).

Now we have the following.

Lemma 3.4. Let £ be a unit vector field on a 2-dimensional Riemannian mani-
fold M. In terms of Lemma 3.1, the Gaussian curvature K¢ of the hypersurface
&(M) € T1 M is given by

:K_2 K(1-K)

K
€T T

+ (—1)S+1m60(K)

| | i K e\
+2“61<1+A2) <( Vst )

where K is the Gaussian curvature of M.

PROOF: In our case, one can easily reduce the formula (6) to the form
Kﬁ = KTlM(g) + det Q.

Applying Lemma 3.2, we see that

detQ = _M\/lj-/\fl (\/11)\2> _ <(_1)s+1§ n ﬂy

1 22 1K eV \?
__§“el<1+x2)_<(_1) ?+1+A2>
_1 1 _(_ S+1£ eo(N) 2
_2“61(1+/\2> <( Vs o)

Combining this result with Lemma 3.3, we get what was claimed. (I

As an application of Lemma 3.4 we prove Theorems 2, 3 and 4.

PROOF OF THEOREM 2: By definition, the extrinsic curvature of a submanifold is
the difference between the sectional curvature of the submanifold and the sectional
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curvature of ambient space along the planes, tangent to the submanifold. In our
case, this is det Q2. If £ is a geodesic vector field, then we may choose eg = ¢ and
then y = k = 0. Therefore, for the extrinsic curvature we get

2

O

PROOF OF THEOREM 3: Since £ is geodesic, we may set eg =&, e =1, s = 1.
Taking into account (7) and (8), we see that A = —k = —o. Lemma 3.1(b) gives
—K = —eg(0) + 0. So the result of Lemma 3.4 takes the form

s

_K? K(1-K) (K eolo) )2

T 1+ 02 2 1+o02
_ K KQ-K) (K K+o 2
4 1+ 02 2 1+o02
_KQ-K) , K(K+0*) (K+o° 2
T 1402 1+ 02 1+ 02

g (ErY
1+ 02
Suppose that K¢ is constant. Then the following cases should be considered:

(a) 0 = const # 0. This means that the orthogonal trajectories of the field £
consist of curves of constant curvature. With respect to this natural coordinate
system, the metric of M? takes the form ds® = du? + f2dv?. Set 0 = —c. Then
the function f should satisfy the equation

fu _
/

the general solution of which is f(u,v) = A(v)e®“. After a v-parameter change
we obtain a metric of the form

ds? = du? + 2" do?.

So, the manifold M? is locally isometric to the hyperbolic 2-plane L? of curvature
—c? and the field ¢ is a geodesic field of (internal or external) normals to the family
of horocycles.

(b) 0 = 0. Then evidently ¢ is a parallel vector field and therefore the manifold
M? is locally Euclidean which implies K ¢=0.
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(c) o is not constant. Then K¢ is constant if K = 1 only. So, M? is contained

in a standard sphere S? and the curvature of £(S2) does not depend on o. Thus,
the field £ is any (local) geodesic vector field. Evidently, K¢ = 0 for this case. [

PROOF OF THEOREM 4: Consider L? with metric ds? = du? + €2 dv? and a
family of vector fields

o =coswX] +sinwXs (w = const),

where X1 = {1,0}, X9 = {0,e™ %} are the unit vector fields.
Since Vx, & = 0, we may set eg = X1, e; = Xo and therefore we have
0 = —c¢, \=c. Then, setting K = —c? and A = ¢ in Lemma 3.4, we get

Kf = —62.
The extrinsic curvature of £(L?) is also constant since

1
det ) = ——c2.
4

Now fix a point Py, at infinity boundary of L? and draw a pencil of parallel
geodesics from Ps through each point of L2. Define a family of submanifolds
€. (L?) for this pencil. Evidently, through each point (p,¢) € Ty L? there passes
only one submanifold of this family. Thus, a family of submanifolds £, form a
hyperfoliation on T; L? of constant intrinsic curvature —c? and constant extrinsic
curvature —%.

Geometrically, £,(L?) is a family of coordinate hypersurfaces w = const in
T1L?. Indeed, let (u,v,w) form a natural local coordinate system on 77 L?. Then
the metric of 73 L? has the form

ds? = du® + 2 e2%dv? + 2 dvdw + dw?.

With respect to these coordinates, the coordinate hypersurface w = const is noth-
ing else but &,(L?) and the induced metric is

ds? = du? + 2 e2Udy?.

Evidently, its Gaussian curvature is constant and equal to —c?. ([
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