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Spaces in which compact subsets are closed

and the lattice of T1-topologies on a set

Ofelia T. Alas, Richard G. Wilson

Abstract. We obtain some new properties of the class of KC-spaces, that is, those topo-
logical spaces in which compact sets are closed. The results are used to generalize
theorems of Anderson [1] and Steiner and Steiner [12] concerning complementation in
the lattice of T1-topologies on a set X.
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The lattice L1(X) of T1-topologies on a setX has a least element 0 (the cofinite
topology) and a greatest element 1 (the discrete topology) but it is known that
there is T1-topology τ (even a T2-topology) with no T1-complement, that is there
is no topology µ such that µ ∨ τ = 1 and µ ∧ τ = 0 (see [11] and [13]). These
negative results notwithstanding, many T1-spaces with “nice” properties have T1-
complements which do not share these properties. For example, it is known that
the T1-complements of many Hausdorff spaces are not Hausdorff (see [12] and
[1]) and it is the purpose of this article to extend results of this kind. We study
T1-complementarity using two weaker properties:

Say that two T1-topologies τ and τ ′ on a setX are T1-independent (respectively,
transversal) if τ ∩ τ ′ is the cofinite topology (respectively, τ ∨ τ ′ is the discrete
topology). As we mentioned in the previous paragraph, if τ and τ ′ are both
T1-independent and transversal, they are said to be T1-complementary.

Central to our results will be the following property: A topological space (X, τ)
is said to be a KC-space if every compact subspace is closed. The topology will
then be termed a KC-topology. Note that KC-spaces are T1 and T2-spaces are KC
(but not vice versa necessarily) and that a sequence in a KC-space can converge to
at most one point. The KC-spaces (which sometimes have been called TB-spaces)
have been studied by a number of authors (see for example [4] and [14]). We will
obtain some new properties of this class of spaces with the aim of applying the
results to problems concerning the lattice L1(X).
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Following [7], we say that a space X has the finite derived set property (which
we abbreviate as the FDS-property) if whenever A is infinite, there is an infinite
subset B ⊆ A such that B has only a finite number of accumulation points in X ,
that is to say, its derived set Bd is finite. It is not hard to show that each
weakly Whyburn T1-space (introduced and called a WAP-space in [8], but see [6]
for the reasons for the change of name) and each sequential KC-space has the
FDS-property.

To complete our list of definitions, we recall that if P is a topological property,
then a space (X, τ) is said to be minimal P (respectively maximal P) if (X, τ) has
property P but no topology on X which is strictly smaller (respectively, strictly
larger) than τ has P . A space (X, τ) is said to be Katětov P if there is a topology
σ ⊆ τ such that (X, σ) is minimal P . Specifically, we are here interested in
minimal KC-spaces, Katětov KC-spaces and maximal compact spaces. All other
terms are standard and can be found in [3].

In 1967, Steiner and Steiner proved that no Hausdorff topology on a countably
infinite set has a Hausdorff complement. In fact, although they did not explicitly
say so, they proved that no Hausdorff topology on a countably infinite set has a
complementary KC-topology. In the same article they showed that any comple-
ment of a first countable topology on an infinite setX must be countably compact
on cofinite subspaces and Anderson [1] showed that such a complement cannot
be both first countable and Hausdorff. In this paper, we generalize results of [7]
to non-Hausdorff spaces and in the process, we generalize the above results of [1]
and [12].

The following result is a slight generalization of Theorem 3.1 of [7].

Theorem 1. Suppose (X, τ) is a T1-space with the FDS-property and τ ′ is an
independent topology for τ ; if (X, τ ′) is a KC-space, it is countably compact and
has no non-trivial convergent sequences.

Proof: Suppose first that (X, τ ′) is not countably compact, then it contains
some countably infinite closed discrete subspace D, whose complement we can
also assume to be infinite. Since τ and τ ′ are complements, D is not closed in
(X, τ) and since this latter space has the FDS-property, there is some B ⊆ D such
that B has only a finite number of accumulation points {x1, . . . , xn} in X . Since
B ∪ {x1, . . . , xn} is an infinite proper τ ′-closed subset of X , we have constructed
an infinite subset which is closed in both topologies, a contradiction.
Now suppose that S is a non-trivial convergent sequence in (X, τ ′) (convergent

to x say) such that X \ S is infinite. Since (X, τ ′) is a KC-space, S ∪ {x}, being
compact, is an infinite τ ′-closed set and hence is not τ -closed. However, since
(X, τ) has the FDS-property, there is some infinite B ⊆ S with only a finite
number of accumulation points which we again denote by {x1, . . . , xn}. It is then
clear that B ∪ {x1, . . . , xn, x} is an infinite set which is closed in both topologies,
a contradiction. �
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Note that in the first part of the above proof we need only to require that
(X, τ ′) be a T1-space.
Every countably infinite, compact KC-space has a non-trivial convergent se-

quence. Suppose X is such a space and let p ∈ X be non-isolated. Then X \ {p}
is not compact, hence not countably compact and so there is an infinite closed
discrete subspace A ⊆ X \ {p}. Enumerating A = {xn : n ∈ ω}, it is clear that
{xn} converges to p in X . However, with a little care we can prove much more.

Theorem 2. If X is a countable, compact T1-space and A ⊆ X then either A is
compact or there is a sequence in A converging to a point of X \ A.

Proof: Suppose A ⊂ X is not compact. Let D be an infinite discrete subset
of A which is closed in A. Since X is compact, Dd 6= ∅ and Dd ⊆ X \ A. We
enumerate cl(D) \ D as {xn : n ∈ ω} and we will show that for some n, xn is the
limit of a sequence in D, showing that A is not sequentially closed.
If each neighborhood U of x0 = z0 is such that D \ U is finite, then any

enumeration of D converges to z0. If not, then pick an open set U0 such that
D \ U0 is infinite and z0 ∈ U0; note that since X is compact and D is discrete,
(cl(D) \ D) \ U0 6= ∅. Now let z1 = xm1 , where m1 = inf{n ∈ ω : xn /∈ U0}. If
each neighborhood U of z1 is such that (D\U0)\U is finite, then any enumeration
of D \ U0 will converge to z1. Having chosen points z0, . . . , zk−1 and open sets
containing them U0, . . . , Uk−1 in such a way that D \

⋃
{Uj : 0 ≤ j ≤ k − 1} is

infinite, it is clear as before that (cl(D)\D)\
⋃
{Uj : 0 ≤ j ≤ k−1} is non-empty

and we let zk = xmk
where mk = inf{n ∈ ω : xn /∈

⋃
{Uj : 0 ≤ j ≤ k − 1}. As

before, either every neighborhood U of zk is such that (D \ U) \
⋃
{Uj : 0 ≤ j ≤

k − 1} is finite (in which case we obtain a sequence convergent to zk) or there is
some U = Uk for which this set is infinite.
However, since D is locally compact, cl(D) \D is compact and hence for some

n ∈ ω, (cl(D) \ D) \
⋃
{Uj : 0 ≤ j ≤ n} = ∅, but (cl(D) \ D) \

⋃
{Uj : 0 ≤ j ≤

n−1} 6= ∅. It is then the case that any enumeration of D \
⋃
{Uj : 0 ≤ j ≤ n−1}

will converge to zn. �

Corollary 3. A compact, countable KC-space is sequential.

Proof: If A is not closed, then it is not compact. The result now follows from
the previous theorem. �

However, a compact countable KC-space does not have to be first countable as
the one-point compactification (see [3, 3.5.11]) of a sequential, non-first countable
space (for example, the space of [3, 1.6.19]), illustrates. Nor does such a space have
to be scattered — the one-point compactification of the rationals is the relevant
example here.

Corollary 4. A countable KC-space has no non-trivial convergent sequences if

and only if every compact subspace is finite.

The next result generalizes Proposition 3.2 of [7].
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Corollary 5. No countably infinite sequential T2-space has an independent topo-
logy which is KC.

Proof: Let (X, τ) be a Hausdorff sequential space. (X, τ) can be condensed
onto a second countable Hausdorff space (X, τ ′) and hence by Theorem 1, any
independent T1-topology µ must be compact and have no non-trivial convergent
sequences. It follows from Corollary 3 that (X, µ) is not KC. �

A similar result was first proved by Steiner and Steiner who showed:

Theorem 6 ([12, Corollary to Theorem 2]). If (X, τ) is a countable Hausdorff
space and τ ′ is T1-complementary, then every cofinite subset of (X, τ ′) is compact.

The next corollary improves (for countable spaces) a result of Wilansky [14,
Theorem 5], who showed that the 1-point compactification of a KC-space is KC
if and only if X is a k-space (see [3, 3.3.18]). We note in passing that a countable
Hausdorff k-space is clearly sequential, but we are not aware of a direct proof that
a countable KC-space which is a k-space is sequential.

Corollary 7. The 1-point compactification of a countable KC-space X is KC if
and only if X is sequential.

Proof: The sufficiency is clear since an open subspace of a sequential space is
sequential.
For the necessity, suppose that C is a compact subspace of the 1-point com-

pactification Y = X ∪ {∞} of X . If ∞ /∈ C then C is a compact subspace of
X , hence closed and so Y \ C is open in Y . If on the other hand ∞ ∈ C, then
if C is not closed in Y , C ∩ X is not closed in X and hence there is a sequence
{xn} in C ∩ X converging to some p /∈ C. Since X is KC, the compact set
S = {p} ∪ {xn : n ∈ ω} is closed in X and so Y \ S is a neighborhood of ∞
and so ∞ is not an accumulation point of {xn}, implying that C is not compact,
a contradiction. �

A problem attributed to R. Larson by Fleissner in [4] is whether a space is
maximal compact if and only if it is minimal KC. It was shown in [9] that a max-
imal compact space is KC, and hence is minimal KC, since any topology weaker
than a compact KC topology cannot be KC. However, the converse problem of
whether every minimal KC topology is compact appears to be still open. We now
show that Larson’s question has a positive answer in the case of countable spaces,
but for clarity, we split the proof into two parts. First we show that a countable
KC-space has the FDS-property.

Lemma 8. If X is a countable KC-space, then every infinite D ⊆ X contains
an infinite subset with only a finite number of accumulation points (in X).

Proof: Enumerate X as {xn : n ∈ ω} and suppose that D ⊆ X is infinite and
every infinite subset of D has infinitely many accumulation points. Let n0 ∈ ω be



Spaces in which compact subsets are closed and the lattice of T1-topologies on a set 645

the smallest integer such that xn0 is an accumulation point of D. If each neigh-
borhood V of xn0 has the property that D\V is finite, then any enumeration ofD
converges to xn0 and hence D has only one accumulation point, a contradiction.
Thus we may choose an open neighborhood V0 of xn0 such that D1 = D \ V0 is
infinite. Having chosen points xn0 , xn1 , . . . , xnj−1 and open sets V0, V1, . . . , Vj−1

such that xnk
∈ Vk for each 1 ≤ k ≤ j − 1 and Dj = D \ (

⋃
{Vk : 1 ≤ k ≤ j − 1})

is infinite, we let nj be the least integer such that xnj is an accumulation point of
Dj and we choose a neighborhood Vj of xnj such that Dj \Vj = Dj+1 is infinite.
Such a choice is again possible for if every neighborhood V of xnj is such that
Dj \V is finite, then any enumeration of Dj is a sequence which converges to xnj

and hence Dj has only one accumulation point.
Now for each j ∈ ω, we choose yj ∈ Dj \ {y0, y1, . . . , yj−1} and we denote the

set {yn : n ∈ ω} by S. It is clear that S is infinite and all but finitely many points
of S are contained in Dj for each j ∈ ω and so an accumulation point of S is an
accumulation point of S ∩ Dj for each j ∈ ω. Thus S can have no accumulation
point, since if p were such a point, then for some k ∈ ω, p = xk and from the
construction, we would have that k ≥ nj for each j ∈ ω, which is absurd. �

Lemma 9. If (X, τ) is a countable non-compact KC-space with the FDS-pro-
perty, then X can be condensed onto a weaker KC-space.

Proof: Since X is not countably compact, there is some countably infinite closed
discrete subspace D = {dn : n ∈ ω} ⊆ X . Fix p ∈ X and F ∈ βω \ ω and define
a new topology σ on X as follows:

(i) if p /∈ U , then U ∈ σ if and only if U ∈ τ ,

and

(ii) if p ∈ U , then U ∈ σ if and only if U ∈ τ and {n ∈ ω : dn ∈ U} ∈ F .

Clearly (X, σ) is a T1-space, σ ⊂ τ and for each B ⊆ X , clσ(B) ⊆ clτ (B)∪{p}.
We show that (X, σ) is a KC-space. To this end, suppose to the contrary that A
is a non-closed compact subset of (X, σ). Obviously p ∈ clσ(A) and there are two
cases to consider:

(a) If p /∈ A, then σ|A = τ |A and so A is compact and hence closed in (X, τ).
Thus there is some U ∈ τ such that p ∈ U and U∩A = ∅. If {n ∈ ω : dn ∈ A} /∈ F ,
then {n ∈ ω : dn ∈ D \A} ∈ F and for each t ∈ D \A we can choose Ut ∈ τ such
that t ∈ Ut and Ut ∩ A = ∅. Then p ∈ U ∪

⋃
{Ut : t ∈ D \ A} ∈ σ contradicting

the fact that p ∈ clσ(A). Thus {n ∈ ω : dn ∈ A} ∈ F and then there is some
infinite set S ⊂ A ∩ D such that S /∈ F and S is then an infinite closed discrete
subset of A in (X, σ), implying that (A, σ|A) is not compact.

(b) If p ∈ A, then clσ(A) = clτ (A). If A is not closed in (X, τ), then A is
not compact (thus not countably compact) in (X, τ), and so there is an infinite
discrete subset C ⊆ A which is closed in (A, τ |A). However, C is not closed in
(A, σ|A) and so clσ(C) ∩ A = C ∪ {p}. This implies that {n : dn ∈ clτ (C)} ∈ F .
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Since (X, τ) has the FDS-property, there is some infinite subset B ⊆ C with only
a finite number of accumulation points in X . Thus {n : dn ∈ clτ (B)} /∈ F which
implies that B is closed and discrete in (A, σ|A), implying in its turn that A is
not compact in (X, σ). �

The following result, an immediate consequence of the previous two lemmas,
is then a partial positive answer to the above-mentioned question of Larson.

Theorem 10. Every minimal KC-topology on a countable set is compact.

These results should be contrasted with the case of minimal Hausdorff spaces.
An example of a countable minimal Hausdorff space which is not countably com-
pact is given in [10, Example 100].

We also note that in [4], Fleissner constructed a countably compact KC-
topology t on ω1 which is not Katětov KC, that is to say, if τ ⊆ t is KC then there
is a τ ′ ⊂ τ which is also KC. It is easy to see that (ω1, t) has the FDS-property
and furthermore, if τ ⊆ t has the FDS-property then so does τ ′. Thus (ω1, t)
cannot be condensed onto a space which is minimal with respect to being both
KC and having the FDS-property.
We turn now to the problem of whether a second countable KC-topology can

have a KC-topology which is complementary. Recall that if κ is a cardinal, then
a space is κ-discrete if it is the union of (at most) κ discrete subspaces, (however,
if κ = ω, then we use the standard terminology, σ-discrete). First we need some
preliminary results, the first of which is a slight generalization of Theorem 2.3
of [13] and we omit the similar proof. For a definition of network and network
weight we refer the reader to [3, 3.1.17].

Lemma 11. Let (X, τ) be a space of network weight κ; if µ is a transversal for τ ,
then µ is κ-discrete.

Our aim now is to show that each infinite, countably compact σ-discrete T1-
space has a non-trivial convergent sequence, but for convenience, we first prove a
preliminary lemma and separate the cases of countable and uncountable X .

Lemma 12. If X is an infinite countably compact T1-space which is the union
of two discrete subspaces, then X has a non-trivial convergent sequence.

Proof: Suppose X is the union of two discrete subsets, E and F . Without
loss of generality, we assume that the points of E are isolated in X and those of
F are the accumulation points of X ; since X is countably compact, F is finite,
say F = {xj : 1 ≤ j ≤ n}. If X \ {x1} is not countably compact, then there
is a discrete subspace G1 ⊆ X \ {x1} whose unique accumulation point is x1.
G1 ∪ {x1} is then a countably compact (and hence compact) Hausdorff space
with only one non-isolated point and thus must contain a non-trivial convergent
sequence. If X \ {x1} is countably compact, then we replace X by X \ {x1} and
consider the subspace X \ {x1, x2}. Since X \ F is not countably compact, there
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is some m (1 ≤ m ≤ n) for which X \ {x1, . . . , xm−1} is countably compact but
X \ {x1, . . . , xm} is not. There is then a sequence converging to xm. �

Lemma 13. A countably infinite, compact T1-space has a non-trivial convergent
sequence.

Proof: Let (X, τ) be such a space. We consider two cases, either (a) all discrete
subspaces of X are finite, or (b) X has an infinite discrete subspace.

(a) Let X = X0; if all discrete subspaces are finite, then either X has the
cofinite topology and hence has a non-trivial convergent sequence or there is an
infinite proper closed subset X1 ⊂ X0. In this case, X0 \ X1 6= ∅ and we can
choose x0 ∈ X0 \X1. Having chosen closed sets Xk and points xk for each k < n
with the property that Xk is an infinite proper closed subset of Xk−1 for each
k ∈ {1, . . . , n− 1}, and xk ∈ Xk−1 \Xk for each k ∈ {1, . . . , n− 1}, there are two
possibilities:

Either Xn−1 has the cofinite topology, in which case it has a non-trivial
convergent sequence and the recursive process ends, or there is some infi-
nite closed proper subspace C ⊂ Xn−1, in which case we define Xn = C
and choose xn ∈ Xn−1 \ Xn.

If it were the case that for all n ∈ ω, Xn contains a proper closed infinite subset,
then for each n, we would have that Un = X \ (Xn ∪ {xk : 1 ≤ k ≤ n − 1}) is an
open set with the property that xk ∈ Un if and only if k = n. Thus {xk : k ∈ ω}
would be an infinite relatively discrete set, contradicting the hypothesis. Hence
there is some m ∈ ω for which the infinite set Xm contains no proper closed
infinite subset, implying that Xm has the cofinite topology and thus contains a
non-trivial convergent sequence.

(b) Suppose now that X contains an infinite discrete subspace D0; denote by
F0 the closed subspace cl(D0) \D0 ⊆ X . Having defined closed subspaces Fγ for
each γ < α (α < ω1), we define Fα as follows:

If α is a limit ordinal, then Fα =
⋂
{Fγ : γ < α}. If α = β + 1 and

Fβ contains an infinite discrete subset Dβ , then let Fα = cl(Dβ) \ Dβ ;
otherwise define Fα = Fβ .

Note that if Fα contains an infinite discrete subspace, then Fα+1 is a proper
subset of Fα. The family {Fα : α ∈ ω1} is a nested family of closed sets in the
compact T1-space X , and hence has non-empty intersection. Furthermore, since
X is countable, there is some minimal λ < ω1 such that Fα = Fλ for all α > λ;
thus Fλ can contain no infinite discrete subspace. There are now three cases to
consider:
(i) If Fλ is infinite, then we apply (a) above to obtain a non-trivial convergent

sequence in Fλ.

(ii) If Fλ is finite and λ is a non-limit ordinal, say λ = γ+1 then since γ < λ,
Fλ = cl(Dγ) \ Dγ where Dγ is an infinite discrete subspace of Fγ . Since Fλ
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is finite, it is discrete and so Fγ is the union of two discrete subspaces, namely
Dγ and Fλ. The existence of a non-trivial convergent sequence now follows from
Lemma 12.

(iii) If Fλ is finite and λ is a limit ordinal, say λ = sup{λn : n ∈ ω} where
λk < λk+1 ∈ ω + 1, then since λn < λ for each n ∈ ω, it follows that Fλn

\ Fλ is
infinite for each n. Thus we can choose pn ∈ Fλn

\ (Fλ ∪ {pk : 1 ≤ k ≤ n − 1}).
Using an argument similar to that in (a) above, for each m ∈ ω, Um = X \
(Fλm+1

∪ {pk : 1 ≤ k ≤ m − 1}) is an open set meeting {pn : n ∈ ω} in {pm};
thus {pn : n ∈ ω} is discrete and hence C = Fλ ∪ {pn : n ∈ ω} is the union of
two discrete subspaces. Furthermore, since pn ∈ Fλn

and Fλ =
⋂
{Fλn

: n ∈ ω},
it follows that all the accumulation points of {pn : n ∈ ω} lie in Fλ and so
C = {pn : n ∈ ω} ∪ Fλ is compact. The existence of a non-trivial convergent
sequence in C again follows from Lemma 12. �

Theorem 14. An infinite, countably compact, σ-discrete T1-space X has a non-
trivial convergent sequence.

Proof: If X is countable, the result follows from the previous lemma. If X is
uncountable, then suppose X =

⋃
{Dn : n ∈ ω}, where Dn is discrete for each

n ∈ ω. At least one of the sets Dn is necessarily infinite and we denote by n0, the
smallest integer for which this occurs. We define X0 = cl(Dn0) \ Dn0 and note
that X0 ⊂ X is closed. There are three alternatives:

i) X0 is finite and hence discrete, in which case cl(Dn0) is an infinite countably
compact T1-space which is the union of two discrete subspaces; the existence of a
non-trivial convergent sequence in X0 now follows from Lemma 12. Or,

ii) X0 is countably infinite, in which case X0 is a countably infinite compact
T1-space and the existence of a non-trivial convergent sequence in X0 now follows
from Lemma 13. Or,

iii) X0 ⊆
⋃
{Dn : n ∈ ω \ {n0}} is uncountable, and hence for some n ∈ ω,

X0 ∩ Dn is uncountable, in which case we denote by n1 the smallest integer for
which this occurs and let X1 = cl(Dn1 ∩ X0) \ (Dn1 ∩ X0). The above process
can now be repeated with X1 in place of X0.

Proceeding in this way, either:

(a) for some j ∈ ω, the closed subspace Xj constructed at the jth step of the
recursion is countable, in which case the arguments of i) or ii) above apply
and we obtain a non-trivial convergent sequence in Xj ⊆ X , or

(b) condition iii) holds for each j ∈ ω and we obtain a nested (infinite) se-
quence of uncountable, countably compact closed subspaces {Xj : j ∈ ω},
in which case we let Y =

⋂
{Xj : j ∈ ω}.

Clearly Y is a non-empty, closed subset of X which meets each of the discrete
sets Dn in a finite set and hence Y is countable. If Y is infinite, the existence
of a non-trivial convergent sequence in Y follows from Lemma 13. If, on the
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other hand, Y is finite then it is discrete, and for each k ∈ ω we can choose
pk ∈ Xk \ (Y ∪ {p0, . . . , pk−1}). As in the proof of Lemma 13, {pn : n ∈ ω}
is discrete and the subspace Z = Y ∪ {pn : n ∈ ω} is compact. Thus Z is the
union of two discrete subsets, {pn : n ∈ ω} and Y . The existence of a non-trivial
sequence again follows from Lemma 12. �

Theorem 15. No infinite KC-space with a countable network and the FDS-

property (in particular, no infinite second countable KC-space) has a T1-comple-
mentary topology which is KC.

Proof: Suppose (X, τ) is an infinite KC-space with a countable network and the
FDS-property and µ is a complement for τ . By Lemma 11, (X, µ) is σ-discrete
and by Theorem 1, µ is countably compact and has no non-trivial convergent
sequences. This contradicts Theorem 14. �

For countable spaces we can do better, applying Lemma 8, we have the follow-
ing strengthening of Theorem 3 of [12]:

Corollary 16. No KC-topology on a countably infinite set has a complementary

KC-topology.

Steiner and Steiner [12, Theorem 2] have shown that any T1-complement of an
infinite first countable Hausdorff space must have non-closed countably compact
subspaces, while Anderson and Stewart [2, Theorem 2] have shown that such
a T1-complement cannot be both Hausdorff and first countable. Furthermore,
Anderson [1, Corollary 1] showed that every Hausdorff Fréchet-Urysohn space has
(at least) one T1-complement which is not KC. These results should be compared
with the following theorem which is an immediate consequence of Theorems 1,
11, 15 and the fact that a sequential KC-space has the FDS-property:

Theorem 17. A T1-complement of an infinite sequential KC-space with a count-
able network is countably compact, σ-discrete, has no non-trivial convergent se-
quences and is not KC.

A number of questions still remain open; some may have been posed before,
but still seem interesting.

Question A. Can every KC-space which is not countably compact be condensed

onto a strictly weaker KC-topology?

Theorem 10 gives a positive answer for countable spaces and in the general
case a positive answer obviously implies that minimal KC-spaces are countably
compact. Note that a KC-space cannot necessarily be condensed onto a KC-space
with a convergent sequence — any compact Hausdorff space with no non-trivial
convergent sequences is an example.
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Question B. When can a KC-space of network weight κ be condensed onto a
KC-space of weight κ (or even onto a KC-space with the FDS-property)?

In the case κ = ℵ0, the answer is negative as the example of the 1-point
compactification of the space of [3, 1.6.19] shows. This space is countable, compact
KC (and hence minimal KC) with uncountable weight. Hence we are led to ask:

Question C. Is every countable KC-space Katětov KC?

It turns out that Question C has a somewhat simpler formulation; we need the
following result:

Theorem 18. A countable KC-space (X, τ) is Katětov KC if and only if there
is a weaker sequential KC-topology σ ⊆ τ .

Proof: If (X, τ) is a countable Katětov KC space, then by Corollary 12, there
is a weaker compact KC-topology σ on X . However, by Corollary 3, (X, σ) is
sequential and the necessity follows.

For the sufficiency, suppose that (X, µ) is a countable KC-space and that τ ⊆ µ
is a sequential KC-topology. If (X, τ) is compact, then it is minimal KC and hence
(X, µ) is Katětov KC. So we assume that (X, τ) is not compact. It follows from
Lemma 7 that the one-point compactification (ωX, ω) is sequential. Following [3,
3.5.11], we identify X with ω(X) ⊆ ωX and denote the singleton ωX \ ω(X) =
ωX \ X by {Ω}. The topology of ωX will be denoted by τω . Let y be any point
of X and define a partition P of ωX by P = {{x} : x ∈ X and x 6= y} ∪ {{y,Ω}}
and denote by σ the quotient topology on P . To further simplify the notation, we
identify x ∈ X (x 6= y) with {x} ∈ P and y ∈ X with {y,Ω} ∈ P and in future
we refer to (X, σ) rather than (P , σ). The quotient map from (ωX, τω), to (X, σ)
will be denoted by q and so:

† Since X is identified with a subset of ωX , if x ∈ (X, σ) and x 6= y, then
q−1[x] = x and q−1[y] = {y,Ω}.

Note that if x 6= y, then U is a τ -neighborhood of x ∈ X if and only if it is a
σ-neighborhood of x and W ∈ σ is a σ-neighborhood of y if and only if q−1[W ] is
a τω-open set containing {y,Ω}. Thus σ ⊂ τ ⊆ µ and clearly (X, σ) is a compact
T1-space. We will show that the space (X, σ) is KC and hence is minimal KC.

To this end, we note first that it follows from [5, Proposition 1.2] that any
quotient of a sequential space is sequential and hence (X, σ) is sequential. To
show that (X, σ) is a KC-space, suppose to the contrary that C is compact but
not closed in (X, σ). Since (X, σ) is sequential:

‡ There is a sequence of distinct points {sn} ⊆ C convergent to s /∈ C in
(X, σ) and since this space is T1, we can assume without loss of generality
that for each n, sn 6= y.
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However, C is compact and so {sn} must have an accumulation point z ∈ C,
showing that the compact subspace A = {sn : n ∈ ω}∪{s} is not closed. Thus to
prove that (X, σ) is a KC-space it suffices to show that the convergent sequence
{sn} together with its limit s, is closed in (X, σ). However, if A is not closed,
then since (X, σ) is sequential, there is a sequence in A converging to t /∈ A.
This sequence is a subsequence of the original sequence {xn} and hence must also
converge to s. Thus in (X, σ) there is a sequence with two distinct limits s and t.
We show that this leads to a contradiction.
Now if y /∈ {s, t}, then by † and ‡, {sn} is sequence with two distinct limits

s and t in ωX , contradicting the fact that ωX is a KC-space. Alternatively, if
y ∈ {s, t}, say y = s, then since t 6= y, it again follows from † and ‡, that {sn}
converges to t in the space ωX .
Now, since S = {sn : n ∈ ω} ∪ {t} is compact in the KC-space ωX , it is

closed and hence y is not an accumulation point of the sequence {sn} in ωX .
Thus by ‡, there is U ∈ τω with y ∈ U such that sn /∈ U for all n (and we can
assume that Ω /∈ U so that with the identifications we are making, q[U ] = U).
Furthermore, since S is compact, V = ωX \ S is an open neighborhood of Ω in
ωX and sn /∈ q[V ] for all n. Now, since q−1[q[U ∪ V ]] = U ∪ V , it follows that
q[U ∪ V ] is a σ-neighborhood of y with the property that sn /∈ q[U ∪ V ] for all n,
contradicting the fact that the sequence {sn} converges to y in (X, σ). Clearly,
the case y = t is identical and we are done. �

Thus Question C is equivalent to the following:

Question C′. Can every countable KC-space be condensed onto a KC-space

which is sequential?

Since each infinite compact Hausdorff space of size less than the continuum is
scattered and has a non-trivial convergent sequence, we are led to ask:

Question D. Does every countably compact KC-space of size less then 2ℵ0 have
the FDS-property?
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