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Spaces in which compact subsets are closed
and the lattice of T-topologies on a set

OFELIA T. ALAS, RICHARD G. WILSON

Abstract. We obtain some new properties of the class of KC-spaces, that is, those topo-
logical spaces in which compact sets are closed. The results are used to generalize
theorems of Anderson [1] and Steiner and Steiner [12] concerning complementation in
the lattice of T1-topologies on a set X.
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The lattice £1(X) of T1-topologies on a set X has a least element 0 (the cofinite
topology) and a greatest element 1 (the discrete topology) but it is known that
there is Th-topology 7 (even a Ta-topology) with no T1-complement, that is there
is no topology p such that p V7 =1 and pu A7 = 0 (see [11] and [13]). These
negative results notwithstanding, many 77-spaces with “nice” properties have 7T7-
complements which do not share these properties. For example, it is known that
the Ti-complements of many Hausdorff spaces are not Hausdorff (see [12] and
[1]) and it is the purpose of this article to extend results of this kind. We study
T1-complementarity using two weaker properties:

Say that two T -topologies 7 and 7/ on a set X are T -independent (respectively,
transversal) if 7 N7/ is the cofinite topology (respectively, 7V 7/ is the discrete
topology). As we mentioned in the previous paragraph, if 7 and 7/ are both
T1-independent and transversal, they are said to be T1-complementary.

Central to our results will be the following property: A topological space (X, 7)
is said to be a KC-space if every compact subspace is closed. The topology will
then be termed a KC-topology. Note that KC-spaces are T7 and Ta-spaces are KC
(but not vice versa necessarily) and that a sequence in a KC-space can converge to
at most one point. The KC-spaces (which sometimes have been called Tg-spaces)
have been studied by a number of authors (see for example [4] and [14]). We will
obtain some new properties of this class of spaces with the aim of applying the
results to problems concerning the lattice £1(X).
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Following [7], we say that a space X has the finite derived set property (which
we abbreviate as the FDS-property) if whenever A is infinite, there is an infinite
subset B C A such that B has only a finite number of accumulation points in X,
that is to say, its derived set B? is finite. It is not hard to show that each
weakly Whyburn T7-space (introduced and called a WAP-space in [8], but see [6]
for the reasons for the change of name) and each sequential KC-space has the
FDS-property.

To complete our list of definitions, we recall that if P is a topological property,
then a space (X, 7) is said to be minimal P (respectively mazimal P) if (X, 7) has
property P but no topology on X which is strictly smaller (respectively, strictly
larger) than 7 has P. A space (X, 7) is said to be Katétov P if there is a topology
o C 7 such that (X,o) is minimal P. Specifically, we are here interested in
minimal KC-spaces, Katétov KC-spaces and maximal compact spaces. All other
terms are standard and can be found in [3].

In 1967, Steiner and Steiner proved that no Hausdorff topology on a countably
infinite set has a Hausdorff complement. In fact, although they did not explicitly
say so, they proved that no Hausdorff topology on a countably infinite set has a
complementary KC-topology. In the same article they showed that any comple-
ment of a first countable topology on an infinite set X must be countably compact
on cofinite subspaces and Anderson [1] showed that such a complement cannot
be both first countable and Hausdorff. In this paper, we generalize results of [7]
to non-Hausdorff spaces and in the process, we generalize the above results of [1]
and [12].

The following result is a slight generalization of Theorem 3.1 of [7].

Theorem 1. Suppose (X, ) is a T1-space with the FDS-property and 7’ is an
independent topology for 7; if (X,7') is a KC-space, it is countably compact and
has no non-trivial convergent sequences.

PROOF: Suppose first that (X,7’) is not countably compact, then it contains
some countably infinite closed discrete subspace D, whose complement we can
also assume to be infinite. Since 7 and 7' are complements, D is not closed in
(X, 7) and since this latter space has the FDS-property, there is some B C D such
that B has only a finite number of accumulation points {x1,..., 2y} in X. Since
BuU{x1,...,z,} is an infinite proper 7/-closed subset of X, we have constructed
an infinite subset which is closed in both topologies, a contradiction.

Now suppose that S is a non-trivial convergent sequence in (X, 7’) (convergent
to x say) such that X \ S is infinite. Since (X,7’) is a KC-space, S U {z}, being
compact, is an infinite 7/-closed set and hence is not 7-closed. However, since
(X,7) has the FDS-property, there is some infinite B C S with only a finite
number of accumulation points which we again denote by {z1,...,zn}. It is then
clear that BU{z1,...,2n,z} is an infinite set which is closed in both topologies,
a contradiction. (]
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Note that in the first part of the above proof we need only to require that
(X,7") be a Ty-space.

Every countably infinite, compact KC-space has a non-trivial convergent se-
quence. Suppose X is such a space and let p € X be non-isolated. Then X \ {p}
is not compact, hence not countably compact and so there is an infinite closed
discrete subspace A C X \ {p}. Enumerating A = {z, : n € w}, it is clear that
{zn} converges to p in X. However, with a little care we can prove much more.

Theorem 2. If X is a countable, compact T -space and A C X then either A is
compact or there is a sequence in A converging to a point of X \ A.

PRrROOF: Suppose A C X is not compact. Let D be an infinite discrete subset
of A which is closed in A. Since X is compact, D¢ # () and D% C X \ A. We
enumerate cl(D)\ D as {zy, : n € w} and we will show that for some n, x,, is the
limit of a sequence in D, showing that A is not sequentially closed.

If each neighborhood U of g = zg is such that D \ U is finite, then any
enumeration of D converges to zg. If not, then pick an open set Uy such that
D\ Uy is infinite and 29 € Up; note that since X is compact and D is discrete,
(cl(D)\ D)\ Uy # 0. Now let z1 = xm,, where my = inf{n € w : z, ¢ Up}. If
each neighborhood U of 21 is such that (D\Up)\U is finite, then any enumeration
of D\ Uy will converge to z1. Having chosen points 2, ..., 2;_1 and open sets
containing them Uy, ..., Ui_1 in such a way that D\ [J{U; : 0 < j < k -1} is
infinite, it is clear as before that (cI(D)\ D)\ U{U; : 0 < j < k— 1} is non-empty
and we let 2z, = xp, where my, = inf{n € w:a, ¢ [J{U; : 0 < j <k —1}. As
before, either every neighborhood U of zj, is such that (D \ U)\ [ J{U;:0<j <
k — 1} is finite (in which case we obtain a sequence convergent to z;) or there is
some U = U}, for which this set is infinite.

However, since D is locally compact, cl(D) \ D is compact and hence for some
n € w, ((D)\ D)\ U{U; : 0 < j < n} = 0, but (D) \ D)\ U{U; : 0 < j <
n—1} # 0. It is then the case that any enumeration of D\ [J{U;: 0 < j <n—1}
will converge to zp. (I

Corollary 3. A compact, countable KC-space is sequential.

PrOOF: If A is not closed, then it is not compact. The result now follows from
the previous theorem. ([

However, a compact countable KC-space does not have to be first countable as
the one-point compactification (see [3, 3.5.11]) of a sequential, non-first countable
space (for example, the space of [3, 1.6.19]), illustrates. Nor does such a space have
to be scattered — the one-point compactification of the rationals is the relevant
example here.

Corollary 4. A countable KC-space has no non-trivial convergent sequences if
and only if every compact subspace is finite.

The next result generalizes Proposition 3.2 of [7].
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Corollary 5. No countably infinite sequential T>-space has an independent topo-
logy which is KC.

PRrOOF: Let (X,7) be a Hausdorff sequential space. (X,7) can be condensed
onto a second countable Hausdorff space (X,7’) and hence by Theorem 1, any
independent T7-topology i must be compact and have no non-trivial convergent
sequences. It follows from Corollary 3 that (X, i) is not KC. O

A similar result was first proved by Steiner and Steiner who showed:

Theorem 6 ([12, Corollary to Theorem 2]). If (X, 7) is a countable Hausdorff
space and 7' is Ty -complementary, then every cofinite subset of (X, 7') is compact.

The next corollary improves (for countable spaces) a result of Wilansky [14,
Theorem 5], who showed that the 1-point compactification of a KC-space is KC
if and only if X is a k-space (see [3, 3.3.18]). We note in passing that a countable
Hausdorff k-space is clearly sequential, but we are not aware of a direct proof that
a countable KC-space which is a k-space is sequential.

Corollary 7. The 1-point compactification of a countable KC-space X is KC if
and only if X is sequential.

ProoF: The sufficiency is clear since an open subspace of a sequential space is
sequential.

For the necessity, suppose that C is a compact subspace of the 1-point com-
pactification ¥ = X U {oo} of X. If co ¢ C then C is a compact subspace of
X, hence closed and so Y \ C' is open in Y. If on the other hand oo € C, then
if C' is not closed in Y, C'N X is not closed in X and hence there is a sequence
{zp} in C N X converging to some p ¢ C. Since X is KC, the compact set
S ={ptU{an : n € w}is closed in X and so Y \ S is a neighborhood of oo
and so oo is not an accumulation point of {zy}, implying that C is not compact,
a contradiction. (|

A problem attributed to R. Larson by Fleissner in [4] is whether a space is
maximal compact if and only if it is minimal KC. It was shown in [9] that a max-
imal compact space is KC, and hence is minimal KC, since any topology weaker
than a compact KC topology cannot be KC. However, the converse problem of
whether every minimal KC topology is compact appears to be still open. We now
show that Larson’s question has a positive answer in the case of countable spaces,
but for clarity, we split the proof into two parts. First we show that a countable
KC-space has the FDS-property.

Lemma 8. If X is a countable KC-space, then every infinite D C X contains
an infinite subset with only a finite number of accumulation points (in X).

PrROOF: Enumerate X as {z, : n € w} and suppose that D C X is infinite and
every infinite subset of D has infinitely many accumulation points. Let ng € w be
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the smallest integer such that x,, is an accumulation point of D. If each neigh-
borhood V' of z, has the property that D\ V is finite, then any enumeration of D
converges to op, and hence D has only one accumulation point, a contradiction.
Thus we may choose an open neighborhood Vj of xy, such that D; = D\ Vp is
infinite. Having chosen points zy,, Zn,,. . - ;Zn;_, and open sets Vo, V1,...,Vj_1
such that z,, € Vi foreach1 <k <j—1land D; =D\ ((H{V;:1<k<j—-1})
is infinite, we let n; be the least integer such that z; is an accumulation point of
Dj and we choose a neighborhood Vj of xp,; such that D; \ V; = D; 1 is infinite.
Such a choice is again possible for if every neighborhood V' of xp; is such that
D;\ 'V is finite, then any enumeration of D; is a sequence which converges to
and hence D; has only one accumulation point.

Now for each j € w, we choose y; € D; \ {%0,y1,-..,yj—1} and we denote the
set {yn : n € w} by S. It is clear that S is infinite and all but finitely many points
of S are contained in D; for each j € w and so an accumulation point of S is an
accumulation point of SN D; for each j € w. Thus S can have no accumulation
point, since if p were such a point, then for some k € w, p = z; and from the
construction, we would have that k > n; for each j € w, which is absurd. (|

Lemma 9. If (X,7) is a countable non-compact KC-space with the FDS-pro-
perty, then X can be condensed onto a weaker KC-space.

PRrROOF: Since X is not countably compact, there is some countably infinite closed
discrete subspace D = {dp : n € w} C X. Fix p € X and F € fw \ w and define
a new topology o on X as follows:

(i) fp¢ U,thenU €oif and only if U € 7,
and
(ii) f pe U, thenU €o ifand only if U € T and {n €w: d, € U} € F.
Clearly (X, o) is a T1-space, o C 7 and for each B C X, cls(B) C cl-(B)U{p}.
We show that (X, o) is a KC-space. To this end, suppose to the contrary that A

is a non-closed compact subset of (X, o). Obviously p € clys(A) and there are two
cases to consider:

(a) If p ¢ A, then 0|A = 7|A and so A is compact and hence closed in (X, 7).
Thus thereis some U € 7suchthat p € Uand UNA =0. If{n e w: dy, € A} ¢ F,
then {n € w:dy, € D\ A} € F and for each t € D\ A we can choose U; € T such
that t € Uy and Uy N A= 0. Then p e UUJ{U; : t € D\ A} € o contradicting
the fact that p € cly(A). Thus {n € w: dy € A} € F and then there is some
infinite set S C AN D such that S ¢ F and S is then an infinite closed discrete
subset of A in (X, o), implying that (A, o|A) is not compact.

(b) If p € A, then cly(A) = cl-(A). If A is not closed in (X, 7), then A is
not compact (thus not countably compact) in (X, 7), and so there is an infinite
discrete subset C' C A which is closed in (4, 7|A4). However, C is not closed in
(A,0]A) and so cly(C) N A= C U {p}. This implies that {n : dp, € cl-(C)} € F.
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Since (X, 7) has the FDS-property, there is some infinite subset B C C with only
a finite number of accumulation points in X. Thus {n : d,, € cl-(B)} ¢ F which
implies that B is closed and discrete in (A4, o|A), implying in its turn that A is
not compact in (X, o). O

The following result, an immediate consequence of the previous two lemmas,
is then a partial positive answer to the above-mentioned question of Larson.

Theorem 10. Every minimal KC-topology on a countable set is compact.

These results should be contrasted with the case of minimal Hausdorff spaces.
An example of a countable minimal Hausdorff space which is not countably com-
pact is given in [10, Example 100].

We also note that in [4], Fleissner constructed a countably compact KC-
topology t on wi which is not Katétov KC, that is to say, if 7 C ¢ is KC then there
is a 7/ C 7 which is also KC. It is easy to see that (w1,t) has the FDS-property
and furthermore, if 7 C ¢ has the FDS-property then so does 7/. Thus (w1, t)
cannot be condensed onto a space which is minimal with respect to being both
KC and having the FDS-property.

We turn now to the problem of whether a second countable KC-topology can
have a KC-topology which is complementary. Recall that if x is a cardinal, then
a space is k-discrete if it is the union of (at most) k discrete subspaces, (however,
if kK = w, then we use the standard terminology, o-discrete). First we need some
preliminary results, the first of which is a slight generalization of Theorem 2.3
of [13] and we omit the similar proof. For a definition of network and network
weight we refer the reader to [3, 3.1.17].

Lemma 11. Let (X, 7) be a space of network weight k; if u is a transversal for T,
then p is k-discrete.

Our aim now is to show that each infinite, countably compact o-discrete 77-
space has a non-trivial convergent sequence, but for convenience, we first prove a
preliminary lemma and separate the cases of countable and uncountable X.

Lemma 12. If X is an infinite countably compact T-space which is the union
of two discrete subspaces, then X has a non-trivial convergent sequence.

PROOF: Suppose X is the union of two discrete subsets, £ and F. Without
loss of generality, we assume that the points of E are isolated in X and those of
F are the accumulation points of X; since X is countably compact, F' is finite,
say F' = {zj : 1 < j <n}. If X\ {x1} is not countably compact, then there
is a discrete subspace G; C X \ {z1} whose unique accumulation point is zj.
G1 U {x1} is then a countably compact (and hence compact) Hausdorff space
with only one non-isolated point and thus must contain a non-trivial convergent
sequence. If X \ {z1} is countably compact, then we replace X by X \ {z1} and
consider the subspace X \ {z1,22}. Since X \ F is not countably compact, there
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is some m (1 < m < n) for which X \ {z1,...,2m—_1} is countably compact but
X \{z1,...,xm} is not. There is then a sequence converging to p,. O

Lemma 13. A countably infinite, compact T -space has a non-trivial convergent
sequence.

PROOF: Let (X, ) be such a space. We consider two cases, either (a) all discrete
subspaces of X are finite, or (b) X has an infinite discrete subspace.

(a) Let X = Xp; if all discrete subspaces are finite, then either X has the
cofinite topology and hence has a non-trivial convergent sequence or there is an
infinite proper closed subset X7 C Xo. In this case, Xo \ X1 # () and we can
choose zg € Xg \ X1. Having chosen closed sets X}, and points xj, for each k < n
with the property that Xj is an infinite proper closed subset of Xj_1 for each
ke{l,...,n—1},and xp, € X},_1 \ X}, for each k € {1,...,n— 1}, there are two
possibilities:

Either X,,_1 has the cofinite topology, in which case it has a non-trivial
convergent sequence and the recursive process ends, or there is some infi-
nite closed proper subspace C' C X,,_1, in which case we define X,, = C
and choose zp, € X,—1 \ Xp.

If it were the case that for all n € w, X, contains a proper closed infinite subset,
then for each n, we would have that Up, = X \ (X, U{z}:1<k<n-—1})isan
open set with the property that xp € Uy, if and only if k = n. Thus {a : k € w}
would be an infinite relatively discrete set, contradicting the hypothesis. Hence
there is some m € w for which the infinite set X, contains no proper closed
infinite subset, implying that X,, has the cofinite topology and thus contains a
non-trivial convergent sequence.

(b) Suppose now that X contains an infinite discrete subspace Dg; denote by
Fp the closed subspace cl(Dg) \ Do € X. Having defined closed subspaces F for
each v < a (& < wy), we define Fy, as follows:

If o is a limit ordinal, then Fo, = (\{Fy : v < a}. If « = B+ 1 and
Fg contains an infinite discrete subset Dg, then let Fy = cl(Dg) \ Dg;
otherwise define Fo, = Fj.

Note that if Fi, contains an infinite discrete subspace, then F,41 is a proper
subset of Fyy. The family {F, : o € w;} is a nested family of closed sets in the
compact T7-space X, and hence has non-empty intersection. Furthermore, since
X is countable, there is some minimal A < wy such that F, = F) for all a > X;
thus F\ can contain no infinite discrete subspace. There are now three cases to
consider:

(i) If F) is infinite, then we apply (a) above to obtain a non-trivial convergent
sequence in F).

(ii) If F) is finite and X is a non-limit ordinal, say A = v+ 1 then since v < A,
F\ = cl(D,) \ D, where D is an infinite discrete subspace of Fy. Since Fy
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is finite, it is discrete and so F& is the union of two discrete subspaces, namely
D, and F). The existence of a non-trivial convergent sequence now follows from
Lemma 12.

(iii) If Fy is finite and A is a limit ordinal, say A = sup{\, : n € w} where
A < Ap+1 € w+ 1, then since A, < A for each n € w, it follows that F \ F) is
infinite for each n. Thus we can choose p, € Fy, \ (F\U{pr:1 <k <n—1}).
Using an argument similar to that in (a) above, for each m € w, Uy, = X \
(Fxpyy Uipk : 1 <k <m —1}) is an open set meeting {p, : n € w} in {pm};
thus {pp : n € w} is discrete and hence C' = F\ U {p, : n € w} is the union of
two discrete subspaces. Furthermore, since p, € F), and Fy = (\{F), : n € w},
it follows that all the accumulation points of {p, : n € w} lie in F) and so
C = {pn : n € w} UF) is compact. The existence of a non-trivial convergent
sequence in C' again follows from Lemma 12. O

Theorem 14. An infinite, countably compact, o-discrete T1-space X has a non-
trivial convergent sequence.

ProoOF: If X is countable, the result follows from the previous lemma. If X is
uncountable, then suppose X = |J{Dp, : n € w}, where D, is discrete for each
n € w. At least one of the sets Dy, is necessarily infinite and we denote by ng, the
smallest integer for which this occurs. We define Xg = cl(Dp,) \ Dy, and note
that Xg C X is closed. There are three alternatives:

i) Xp is finite and hence discrete, in which case cl(Dp,) is an infinite countably
compact T7-space which is the union of two discrete subspaces; the existence of a
non-trivial convergent sequence in Xy now follows from Lemma 12. Or,

ii) X is countably infinite, in which case X is a countably infinite compact
T1-space and the existence of a non-trivial convergent sequence in Xg now follows
from Lemma 13. Or,

i) Xo € U{Dn : n € w\ {no}} is uncountable, and hence for some n € w,
Xo N Dy, is uncountable, in which case we denote by nj the smallest integer for
which this occurs and let X1 = cl(Dyp, N Xg) \ (D, N Xp). The above process
can now be repeated with X in place of Xj.

Proceeding in this way, either:

(a) for some j € w, the closed subspace X; constructed at the jth step of the
recursion is countable, in which case the arguments of i) or ii) above apply
and we obtain a non-trivial convergent sequence in X; C X, or

(b) condition iii) holds for each j € w and we obtain a nested (infinite) se-
quence of uncountable, countably compact closed subspaces {X; : j € w},
in which case we let Y = (\{X, : j € w}.

Clearly Y is a non-empty, closed subset of X which meets each of the discrete
sets D, in a finite set and hence Y is countable. If Y is infinite, the existence
of a non-trivial convergent sequence in Y follows from Lemma 13. If, on the
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other hand, Y is finite then it is discrete, and for each £ € w we can choose
pe € X\ Y U{po,...,pp_1}). As in the proof of Lemma 13, {p, : n € w}
is discrete and the subspace Z = Y U {p, : n € w} is compact. Thus Z is the
union of two discrete subsets, {pn : n € w} and Y. The existence of a non-trivial
sequence again follows from Lemma 12. O

Theorem 15. No infinite KC-space with a countable network and the FDS-
property (in particular, no infinite second countable KC-space) has a T1-comple-
mentary topology which is KC.

PROOF: Suppose (X, 7) is an infinite KC-space with a countable network and the
FDS-property and p is a complement for 7. By Lemma 11, (X, u) is o-discrete
and by Theorem 1, p is countably compact and has no non-trivial convergent
sequences. This contradicts Theorem 14. (I

For countable spaces we can do better, applying Lemma 8, we have the follow-
ing strengthening of Theorem 3 of [12]:

Corollary 16. No KC-topology on a countably infinite set has a complementary
KC-topology.

Steiner and Steiner [12, Theorem 2] have shown that any 77-complement of an
infinite first countable Hausdorff space must have non-closed countably compact
subspaces, while Anderson and Stewart [2, Theorem 2| have shown that such
a Th-complement cannot be both Hausdorff and first countable. Furthermore,
Anderson [1, Corollary 1] showed that every Hausdorff Fréchet-Urysohn space has
(at least) one Tj-complement which is not KC. These results should be compared
with the following theorem which is an immediate consequence of Theorems 1,
11, 15 and the fact that a sequential KC-space has the FDS-property:

Theorem 17. A Ty-complement of an infinite sequential KC-space with a count-
able network is countably compact, o-discrete, has no non-trivial convergent se-
quences and is not KC.

A number of questions still remain open; some may have been posed before,
but still seem interesting.

Question A. Can every KC-space which is not countably compact be condensed
onto a strictly weaker KC-topology?

Theorem 10 gives a positive answer for countable spaces and in the general
case a positive answer obviously implies that minimal KC-spaces are countably
compact. Note that a KC-space cannot necessarily be condensed onto a KC-space
with a convergent sequence — any compact Hausdorff space with no non-trivial
convergent sequences is an example.
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Question B. When can a KC-space of network weight x be condensed onto a
KC-space of weight x (or even onto a KC-space with the FDS-property)?

In the case kK = Np, the answer is negative as the example of the 1-point
compactification of the space of [3, 1.6.19] shows. This space is countable, compact
KC (and hence minimal KC) with uncountable weight. Hence we are led to ask:

Question C. Is every countable KC-space Katétov KC?

It turns out that Question C has a somewhat simpler formulation; we need the
following result:

Theorem 18. A countable KC-space (X, 1) is Katétov KC if and only if there
is a weaker sequential KC-topology o C 7.

Proor: If (X, 1) is a countable Katétov KC space, then by Corollary 12, there
is a weaker compact KC-topology ¢ on X. However, by Corollary 3, (X, o) is
sequential and the necessity follows.

For the sufficiency, suppose that (X, 1) is a countable KC-space and that 7 C 4
is a sequential KC-topology. If (X, 7) is compact, then it is minimal KC and hence
(X, ) is Katétov KC. So we assume that (X, 7) is not compact. It follows from
Lemma 7 that the one-point compactification (wX,w) is sequential. Following [3,
3.5.11], we identify X with w(X) C wX and denote the singleton wX \ w(X) =
wX \ X by {Q}. The topology of wX will be denoted by 7. Let y be any point
of X and define a partition P of wX by P = {{z} : 2z € X and = # y} U {{y, Q}}
and denote by o the quotient topology on P. To further simplify the notation, we
identify z € X (x # y) with {z} € P and y € X with {y,Q} € P and in future
we refer to (X, o) rather than (P, o). The quotient map from (wX, 7,), to (X, 0)
will be denoted by ¢ and so:

T Since X is identified with a subset of wX, if x € (X,0) and = # y, then
g o] = x and ¢~ [y) = {y. 2}

Note that if x # y, then U is a T-neighborhood of x € X if and only if it is a
o-neighborhood of = and W € ¢ is a o-neighborhood of ¥ if and only if g~ [W] is
a 7,-open set containing {y, Q}. Thus o C 7 C p and clearly (X, 0) is a compact
T-space. We will show that the space (X, o) is KC and hence is minimal KC.

To this end, we note first that it follows from [5, Proposition 1.2] that any
quotient of a sequential space is sequential and hence (X, o) is sequential. To
show that (X, o) is a KC-space, suppose to the contrary that C' is compact but
not closed in (X, o). Since (X, o) is sequential:

I There is a sequence of distinct points {s,} C C convergent to s ¢ C in
(X, o) and since this space is T}, we can assume without loss of generality
that for each n, s, # y.
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However, C is compact and so {sp} must have an accumulation point z € C,
showing that the compact subspace A = {s,, : n € w}U{s} is not closed. Thus to
prove that (X, o) is a KC-space it suffices to show that the convergent sequence
{sn} together with its limit s, is closed in (X, o). However, if A is not closed,
then since (X, o) is sequential, there is a sequence in A converging to ¢t ¢ A.
This sequence is a subsequence of the original sequence {z,} and hence must also
converge to s. Thus in (X, o) there is a sequence with two distinct limits s and ¢.
We show that this leads to a contradiction.

Now if y ¢ {s,t}, then by T and I, {sp} is sequence with two distinct limits
s and t in wX, contradicting the fact that wX is a KC-space. Alternatively, if
y € {s,t}, say y = s, then since t # y, it again follows from 1 and i, that {sp}
converges to ¢ in the space wX.

Now, since S = {s, : n € w} U {t} is compact in the KC-space wX, it is
closed and hence y is not an accumulation point of the sequence {s,} in wX.
Thus by i, there is U € 7, with y € U such that s, ¢ U for all n (and we can
assume that Q ¢ U so that with the identifications we are making, ¢[U] = U).
Furthermore, since S is compact, V = wX \ S is an open neighborhood of Q in
wX and s, ¢ ¢[V] for all n. Now, since ¢ [q[U UV]] = U UV, it follows that
q[U U V] is a o-neighborhood of y with the property that s, ¢ q[U U V] for all n,
contradicting the fact that the sequence {s,} converges to y in (X,o). Clearly,
the case y =t is identical and we are done. ([

Thus Question C is equivalent to the following:

Question C’. Can every countable KC-space be condensed onto a KC-space
which is sequential?

Since each infinite compact Hausdorff space of size less than the continuum is
scattered and has a non-trivial convergent sequence, we are led to ask:

Question D. Does every countably compact KC-space of size less then 280 have
the FDS-property?
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