Lyapunov measures on effect algebras

ANNA AVALLONE, GIUSEPPINA BARBIERI

Abstract. We prove a Lyapunov type theorem for modular measures on lattice ordered effect algebras.

Keywords: Lyapunov measures, effect algebras, modular functions

Classification: 22B05, 06C15

1. Introduction

The celebrated Lyapunov's theorem says that the range of a non-atomic finite dimensional measure μ on a σ -algebra is convex. In general, this is not true if μ is infinite dimensional. On the other hand, Knowles showed that when μ is properly non-injective with values in a locally convex linear space, then its range is still convex. In [11], De Lucia and Wright, after introducing a notion of a convex set, generalize Knowles' result to the case when μ is group-valued.

In noncommutative measure theory it is known (see [5, Example 3.7]) that there are examples of nonatomic \mathbb{R}^n -valued measures on effect algebras which do not have a convex range. Nevertheless, in [5] it is proved (see 3.12) that a Lyapunov type theorem holds for \mathbb{R}^n -valued modular measures on lattice ordered effect algebras. Moreover, in [2], the result of [11] has been extended to modular functions on complemented lattices. Then a natural question arises:

Is it possible to extend the result of [11] to modular measures on effect algebras?

In this paper we give an affirmative answer to this question, introducing the notion of a pseudo non-injective measure (see Definition 4.1) in an effect algebra which is equivalent to the notion of properly non-injective measures in the Boolean case.

We recall that effect algebras have been introduced by D.J. Foulis and M.K. Bennett in 1994 (see [7]) for modelling unsharp measurement in a quantum mechanical system. They are a generalization of many structures which arise in quantum physics (see [6]) and in Mathematical Economics (see [14] and [9]), in particular of orthomodular lattices in noncommutative measure theory (e.g. see [12]) and MV-algebras in fuzzy measure theory.

2. Preliminaries

We will fix some notations. First we will give the definition of a D-poset. Examples of D-posets can be found in [10] and [13].

Definition 2.1. Let (L, \leq) be a partial ordered set (a poset for short). A partial binary operation \ominus on L such that $b \ominus a$ is defined iff $a \leq b$ is called a *difference* on (L, \leq) if the following conditions are satisfied for all $a, b, c \in L$:

- (1) if $a \leq b$ then $b \ominus a \leq b$ and $b \ominus (b \ominus a) = a$,
- (2) if $a \leq b \leq c$ then $c \ominus b \leq c \ominus a$ and $(c \ominus a) \ominus (c \ominus b) = b \ominus a$.

Definition 2.2. Let (L, \leq, \ominus) be a poset with difference and let 0 and 1 be the least and greatest elements in L, respectively. The structure (L, \leq, \ominus) is called a *difference poset* (*D*-poset for short), or a *difference lattice* (*D*-lattice for short) if L is a lattice.

An alternative structure to a D-poset is that of an effect algebra introduced by Foulis and Bennett in [7]. These two structures, D-posets and effect algebras, are equivalent as shown in [13, Theorem 1.3.4].

We recall that a D-lattice is complete (σ -complete) if every set (countable set) has a supremum and an infimum.

If $a \in L$, we set $a^{\perp} = 1 \ominus a$.

We say that a and b are orthogonal if $a \leq b^{\perp}$ and we write $a \perp b$. If $a \perp b$, we set $a \oplus b = (a^{\perp} \ominus b)^{\perp}$. If $a_1, \ldots, a_n \in L$ we define inductively $a_1 \oplus \cdots \oplus a_n = (a_1 \oplus \cdots \oplus a_{n-1}) \oplus a_n$ if the right-hand side exists. The sum is independent of any permutation of the elements. We say that $\{a_1, \ldots, a_n\}$ is orthogonal if $a_1 \oplus \cdots \oplus a_n$ exists. We say that a family $\{a_{\alpha}\}_{\alpha \in A}$ is *orthogonal* if every finite subfamily is orthogonal. If $\{a_{\alpha}\}_{\alpha \in A}$ is orthogonal, we define $\bigoplus_{\alpha \in A} a_{\alpha} := \sup\{\bigoplus_{\alpha \in F} a_{\alpha} : F \subset A \text{ finite}\}$ if the left-hand side exists.

If (G, +) is an abelian group, a function $\mu : L \to G$ is called *modular* if, for every $a, b \in L$, $\mu(a \lor b) + \mu(a \land b) = \mu(a) + \mu(b)$; μ is called a *measure* if, for every $a, b \in L$, with $a \perp b$, $\mu(a \oplus b) = \mu(a) + \mu(b)$. It is easy to see that μ is a measure iff for every $a, b \in L$ with $b \leq a, \mu(a \ominus b) = \mu(a) - \mu(b)$.

A measure μ is said to be σ -additive if, for every orthogonal sequence in Lsuch that $a = \bigoplus_{n \in \mathbb{N}} a_n$ exists, $\mu(a) = \sum_{n \in \mathbb{N}} \mu(a_n)$. A measure μ is said to be completely additive if for every orthogonal family $\{a_\alpha\}_{\alpha \in A}$ in L such that $a = \bigoplus_{\alpha \in A} a_\alpha$ exists, the family $\{\mu(a_\alpha)\}_{\alpha \in A}$ is summable in G and $\mu(a) = \sum_{\alpha \in A} \mu(a_\alpha)$.

Recall that by 3.1 of [17] every modular function $\mu : L \to G$ on any lattice generates a lattice uniformity, $\mathcal{U}(\mu)$, i.e. a uniformity which makes \wedge and \vee uniformly continuous.

We say that $\mathcal{U}(\mu)$ is *exhaustive* if every monotone sequence $\{a_n\}$ is a Cauchy sequence. We say that $\mathcal{U}(\mu)$ is σ -order (order) continuous if every sequence (net)

 $\{a_n\}$ which is order converging to a is converging to a. We say that a modular measure is exhaustive, σ -order (order) continuous iff $\mathcal{U}(\mu)$ is so. By 2.2 of [4], a measure is σ -additive iff it is σ -order continuous.

Throughout this article, (G, +) is an abelian topological Hausdorff group which has not \mathbb{Z}_2 as a subgroup, L is a σ -complete D-lattice and $\mu : L \to G$ is a σ -additive modular measure.

3. Semi-convexity

We shall call $x \in G$ infinitely divisible if for every $n \in \mathbb{N}$ there exists $y \in G$ such that $2^n y = x$. Since \mathbb{Z}_2 is not a subgroup of G it is clear that when $2^n y = x$, y is uniquely determined. In what follows we shall denote such a y by $\frac{1}{2^n}x$. If $d = \frac{s}{2^n}$ is a dyadic rational number of the real interval [0, 1] and $x \in G$ is infinitely divisible, we define dx to be sy, where $y = \frac{1}{2^n}x$. By [11] the definition of dx does not depend on the representation of d. Let D be the set of dyadic rationals in [0, 1]. For every infinite divisible $x \in G$, let $g_x : D \to G$ be defined by $g_x(d) = dx$ for $d \in D$. If $t \in [0, 1]$ and $\lim_{d \to t} g_x(d)$ exists in G, we define $tx = \lim_{d \to t} g_x(d)$. If $M \subset G$, M is said to be convex if for every $x, y \in M$ and $t \in [0, 1], tx, (1-t)y$ exist and $tx + (1-t)y \in M$.

Definition 3.1. A measure μ is said to be *semiconvex* if, for each $b \in L$, there exists $c \in L$ such that $c \leq b$ and $\mu(b) = 2\mu(c)$.

Lemma 3.2. If μ is semiconvex, then every element of $\mu(L)$ is infinitely divisible.

PROOF: For every $a \in L$ and $n \in \mathbb{N}$, there exists $b \leq a$ such that $\mu(a) = 2^n \mu(b)$.

Lemma 3.3. Suppose that μ is semiconvex. Then for every $a \in L$ and $d \in D$, there exists $a_d \leq a$ such that $\mu(a_d) = d\mu(a)$. Moreover, if $d_1 < d_2$, then $a_{d_1} \leq a_{d_2}$.

PROOF: Let $a \in L$.

(i) Claim 1: For every $n \in \mathbb{N}$ there exists an orthogonal family $\Pi_n = \{a_{n,1}, \ldots, a_{n,2^n}\}$ in L such that $\bigoplus_{j=1}^{2^n} a_{n,j} = a$ and, for every $i \in \{1, \ldots, 2^n\}$ we have:

- (a) $2^n \mu(a_{n,i}) = \mu(a),$
- (b) $a_{n,2i-1} \oplus a_{n,2i} = a_{n-1,i}$.

This is trivial for n = 1: Since μ is semiconvex, we can choose $a_{1,1} \leq a$ such that $2\mu(a_{1,1}) = \mu(a)$. Let $a_{1,2} := a \ominus a_{1,1}$. Then $a_{1,1} \oplus a_{1,2} = a$ and $2\mu(a_{1,2}) = 2\mu(a) - 2\mu(a_{1,1}) = \mu(a)$.

By induction, suppose that Claim 1 holds for $n \in \mathbb{N}$. Since μ is semiconvex, for every $i \in \{1, \ldots, 2^n\}$ we can find $a_{n+1,2i-1}, a_{n+1,2i}$ in L such that $a_{n+1,2i-1} \oplus a_{n+1,2i} = a_{n,i}$ and $2\mu(a_{n+1,2i-1}) = 2\mu(a_{n+1,2i}) = \mu(a_{n,i})$. Set $\Pi_{n+1} = \{a_{n+1,1}, a_{n+1,2}, \dots, a_{n+1,2^{n+1}}\}$. Then Π_{n+1} is orthogonal since $a = \bigoplus_{i=1}^{2^n} a_{n,i} = \bigoplus_{i=1}^{2^n} (a_{n+1,2i-1} \oplus a_{n+1,2i}) = \bigoplus_{i=1}^{2^{n+1}} a_{n+1,i}$ and for every $i \in \{1, \dots, 2^{n+1}\}$ we have $2^{n+1}\mu(a_{n+1,i}) = 2^n\mu(a_{n,i}) = \mu(a)$.

(ii) Now we obtain a family $\{b_{n,s} : n \in \mathbb{N}\}$ with $s \in \{0, 1, \dots, 2^n\}$ such that:

- (1) $b_{n,0} = 0$ and $b_{n,2^n} = a$,
- (2) $b_{n,i-1} \leq b_{n,i}$,
- (3) $2^n \mu(b_{n,i}) = i\mu(a),$
- (4) if $\frac{r}{2^m} = \frac{s}{2^n}$, then $b_{m,r} = b_{n,s}$.

It is sufficient to set $b_{n,0} = 0$ and, for $i \in \{1, \ldots, 2^n\}$, $b_{n,i} = \bigoplus_{j \le i} a_{n,j}$.

(iii) If $d = \frac{r}{2^m}$, set $a_d = b_{m,r}$. Then by (ii), $a_d \leq a$ and $2^m \mu(a_d) = r\mu(a)$, from which $\mu(a_d) = d\mu(a)$. Moreover, by (ii), if $d_1 < d_2$ then $a_{d_1} \leq a_{d_2}$.

Lemma 3.4. Suppose that μ is semiconvex. Then for every $a \in L$ and for every 0-neighborhood W in G there exists $m \in \mathbb{N}$ such that for every $p \in D$ with $p \leq \frac{1}{2^m}$, $p\mu(a) \in W$.

PROOF: Let $a \in L$ and W be a 0-neighborhood in G. Since μ is semiconvex, we can construct a decreasing sequence $\{a_n\}$ in L such that $a_n \leq a$ and $2^n \mu(a_n) = \mu(a)$ for every $n \in \mathbb{N}$. Let $b_1 := a \ominus a_1$ and for every $n \geq 2$, let $b_n := a_{n-1} \ominus a_n$. By 3.3 of [1], $\{b_n\}$ is orthogonal and for every $n \in \mathbb{N}$, $2^n \mu(b_n) = 2^n \mu(a_{n-1}) - 2^n \mu(a_n) = 2\mu(a) - \mu(a) = \mu(a)$. Suppose that for every $m \in \mathbb{N}$ there exists c_m such that $\mu(b_m \wedge c_m) \notin W$. Since $\{b_n\}$ is orthogonal, $\{c_m \wedge b_m\}$ is orthogonal, too. Moreover, by 8.1.2 of [16], μ is exhaustive. By 2.4 of [3], μ is exhaustive if and only if $\mu(a_n) \to 0$ for every orthogonal sequence $\{a_n\}$ in L. Therefore, we obtain that $\lim_m \mu(b_m \wedge c_m) = 0$, a contradiction. Hence we can choose $m \in \mathbb{N}$ such that $\mu(b_m \wedge b) \in W$ for every $b \in L$. Set $p = \frac{r}{2^n}$, with $p \leq \frac{1}{2^m}$. By 3.3, we can find $c \leq b_m$ such that $\mu(c) = \frac{r}{2^{n-m}}\mu(b_m)$. Then $p\mu(a) = \frac{r}{2^n}\mu(a) = \frac{r}{2^{n-m}}\mu(b_m) = \mu(c) = \mu(c \wedge b_m) \in W$.

Lemma 3.5. Suppose that μ is semiconvex. Then for every $a \in L$ and every $t \in [0,1]$ there exists $a_t \leq a$ such that $t\mu(a)$ is defined and $t\mu(a) = \mu(a_t)$. Moreover, the map $t \mapsto a_t$ is increasing.

PROOF: We repeat the same argument as in [2]. It follows from 3.3 that there exists a family of elements of $L \{a_d\}_{d\in D}$ such that $\mu(a_d) = d\mu(a)$ for each $d \in D$ and, also, for $d_1 < d_2$, $a_{d_1} \leq a_{d_2} \leq a$. Let $t \in [0,1] \setminus D$. We define α_t, β_t by $\alpha_t = \bigvee \{a_d : d \in D \text{ and } d < t\}$ and $\beta_t = \bigwedge \{a_d : d \in D \text{ and } d > t\}$. By using the σ -order continuity of μ we find that $\mu(\alpha_t) = \lim_{d \neq t} \mu(a_d) \ \mu(\beta_t) = \lim_{d \searrow t} \mu(a_d)$. Let V be any symmetric 0-neighbourhood in G. It follows from the construction and from 3.4 that we can find $n \in \mathbb{N}$ and $r \in \{0, 1, \ldots, 2^n\}$ such that $d = \frac{r}{2^n} < t < \frac{r+1}{2^n} = d', \ \mu(\beta_t) - \mu(\alpha_{d'}) \in V, \ \mu(\alpha_t) - \mu(a_d) \in V, \text{ and } \frac{1}{2^n}\mu(a) \in V$. Then $(\mu(\beta_t) - \mu(\alpha_t)) \in \mu(a_{d'}) - \mu(a_d) + 2V = \frac{1}{2^n}\mu(a) + 2V \subset 3V$. Since the symmetric neighbourhoods form a base for 0-neighbourhoods, and since

the topology is Hausdorff, $\mu(\beta_t) = \mu(\alpha_t)$. Hence we can define a_t , for $t \in [0,1] \setminus D$ to be α_t . Then it is clear that $\mu(a_t) = t\mu(a)$ for each $t \in [0,1]$.

Lemma 3.6. Let $t \in [0,1]$ and $\nu_t : L \to G$ be defined as $\nu_t(a) = t\mu(a)$. Then ν_t is a modular measure.

PROOF: Let $a, b \in L$.

First suppose $t = \frac{s}{2^n} \in D$. By 3.3 we can find $a_t, b_t \in L$ with $a_t \leq a, b_t \leq b$, $2^n \mu(a_t) = s\mu(a)$ and $2^n \mu(b_t) = s\mu(b)$. Then we have $2^n \mu(a_t \vee b_t) + 2^n \mu(a_t \wedge b_t) = 2^n \mu(a_t) + 2^n \mu(b_t) = s\mu(a) + s\mu(b) = s\mu(a \wedge b) + s\mu(a \vee b)$, from which $\nu_t(a \vee b) + \nu_t(a \wedge b) = \nu_t(a) + \nu_t(b)$.

Now let $t \notin D$ and choose an increasing sequence $\{d_n\}$ in D which converges to t. Then $t\mu(a \lor b) + t\mu(a \land b) = \lim_n d_n\mu(a \lor b) + \lim_n d_n\mu(a \land b) = t\mu(a) + t\mu(b)$, from which $\nu_t(a \lor b) + \nu_t(a \land b) = \nu_t(a) + \nu_t(b)$.

In a similar way we prove that ν_t is a measure.

4. Lyapunov measures

In this section we set

$$I(\mu) = \{a \in L : \mu([0, a]) = \{0\}\}\$$

and

 $N(\mu) = \{(a, b) \in L \times L : \mu \text{ is constant on } [a \land b, a \lor b] \}.$

By 3.1 of [17] and 4.3 of [4] $N(\mu)$ is a congruence relation and the quotient $\hat{L} = L/N(\mu)$ is a D-lattice. Moreover, the function $\hat{\mu} : \hat{L} \to G$ defined as $\hat{\mu}(\hat{a}) = \mu(a)$ for $a \in \hat{a} \in \hat{L}$ is trivially a modular measure.

We say that μ is *closed* if \hat{L} is complete with respect to the uniformity $\mathcal{U}(\hat{\mu})$ generated by $\hat{\mu}$.

Definition 4.1. We say that μ is *pseudo non-injective* if for every $a \in L \setminus I(\mu)$ there exist $b, c \in L \setminus I(\mu), b \perp c, b \oplus c \leq a$ and $\mu(b) = \mu(c)$.

Lemma 4.2. (1) μ is exhaustive.

- (2) μ is closed iff μ is order continuous and (\hat{L}, \leq) is complete.
- (3) If G is metrizable, then μ is closed.
- (4) If μ is order continuous, then μ is completely additive.

PROOF: (1) By 8.1.2 of [16], every σ -order continuous lattice uniformity on a σ -complete lattice is exhaustive.

(2) By (1) and 1.2.6 of [16], the Hausdorff uniformity $\mathcal{U}(\hat{\mu})$ generated by $\hat{\mu}$ on \hat{L} is exhaustive. Then, by 6.3 of [16], $(\hat{L}, \mathcal{U}(\hat{\mu}))$ is complete iff $\mathcal{U}(\hat{\mu})$ is order continuous and (\hat{L}, \leq) is complete. Therefore, if μ is closed, we have that (\hat{L}, \leq) is complete and $\hat{\mu}$ is order continuous, too.

Conversely, if (\hat{L}, \leq) is complete and μ is order continuous, then $\hat{\mu}$ is order continuous by 7.1.9 of [16], and therefore μ is closed.

(3) Since G is metrizable, $\mathcal{U}(\mu)$ is metrizable and, by (1), it is exhaustive. By 8.1.4 of [16] (see also 3.5 and 3.6 of [17]), we get that (L, \leq) is complete and μ is order continuous. By 7.1.9 of [16], (\hat{L}, \leq) is complete, too. Hence μ is closed by (2).

(4) Let $\{a_{\alpha}\}_{\alpha \in A}$ be an orthogonal family in L such that $a = \sup\{\bigoplus_{\alpha \in F} a_{\alpha} : F \subset A \text{ finite}\}$ exists in L. For every finite $F \subset A$, let $a_F = \bigoplus_{\alpha \in F} a_{\alpha}$. Then $\{a_F : F \subset A, F \text{ finite}\}$ is an increasing net in L, with $a = \sup_F a_F$. Since μ is order continuous, $\mu(a) = \lim_F \mu(a_F)$. On the other hand $\mu(a_F) = \sum_{\alpha \in F} \mu(a_{\alpha})$. Thus $\mu(a) = \sum_{\alpha \in A} \mu(a_{\alpha})$.

Theorem 4.3. Let L be complete and let μ be completely additive with $I(\mu) = \{0\}$. Then μ is semiconvex if and only if μ is pseudo non-injective.

PROOF: \Rightarrow : Let $a \in L \setminus I(\mu)$.

First, suppose $\mu(a) \neq 0$. Then there exists $b \leq a$ such that $2\mu(b) = \mu(a)$. Put $c := a \ominus b$. Then $b \perp c$, $b \oplus c = a$ and $\mu(b) = \mu(c)$, as $2\mu(c) = 2\mu(a) - 2\mu(b) = \mu(a)$. Moreover, $b, c \notin I(\mu)$, since $\mu(b) = \mu(c) \neq 0$.

Now let $\mu(a) = 0$. As $a \notin I(\mu)$, there exists $d \leq a$ such that $\mu(d) \neq 0$. From above, there exist $b, c \in L \setminus I(\mu), b \perp c, b \oplus c \leq d$ and $\mu(b) = \mu(c)$. Obviously, $b \oplus c \leq a$.

 \Leftarrow : Let $a \neq 0$. We can suppose $\mu(a) \neq 0$.

(i) We will show that $\exists h, 0 < h \leq a$ such that $\mu(h) = \mu(a)$ and $\mu(k) \neq 0$ for each $0 < k \leq h$.

We can suppose that there exists $b \le a$, $b \ne 0$ and $\mu(b) = 0$, since otherwise (i) is satisfied with h = a.

Recall that in a complete D-lattice, if $\{b_{\gamma}\}_{\gamma \in \Gamma}$ is an orthogonal family then, for every $\bar{\gamma} \in \Gamma$, the set $\{\gamma \in \Gamma : b_{\gamma} = b_{\bar{\gamma}}\}$ is finite (see [DP] p.17). Then by Zorn's lemma we can find an orthogonal family $\{a_{\alpha}\}_{\alpha \in A}$ with the following properties:

(1) For every $\alpha \in A$, $a_{\alpha} \neq 0$ and $\mu(a_{\alpha}) = 0$.

(2) For every finite $F \subset A$, $\bigoplus_{\alpha \in F} a_{\alpha} \leq a$.

(3) If $\{b_{\gamma}\}_{\gamma \in \Gamma}$ is an orthogonal family in L with (1) and (2), then for each $\bar{\gamma} \in \Gamma$ the set $\{\alpha \in A : a_{\alpha} = b_{\bar{\gamma}}\} \neq \emptyset$ and $\{\gamma \in \Gamma : b_{\gamma} = b_{\bar{\gamma}}\} \subset \{\alpha \in A : a_{\alpha} = b_{\bar{\gamma}}\}.$

Since L is complete, $e = \bigoplus_{\alpha \in A} a_{\alpha}$ is well-defined. By (2) we get $e \leq a$. Since μ is completely additive we have $\mu(e) = \sum_{\alpha \in A} \mu(a_{\alpha}) = 0$. Put $h := a \ominus e$. Then $h \leq a$ and $\mu(h) = \mu(a)$.

We will show that, if $0 < b \le h$, $\mu(b) \ne 0$.

By way of contradiction, assume $b \in L$, $0 < b \leq h$ and $\mu(b) = 0$. Since $b \leq h \leq e^{\perp} \leq (\bigoplus_{\alpha \in F} a_{\alpha})^{\perp}$ for each finite $F \subset A$, we have, by 4.2 of [7] that every finite subfamily of $\{a_{\alpha}\}_{\alpha \in A} \cup \{b\}$ is orthogonal. Moreover, if $F \subset A$ is finite, we have $b \bigoplus (\bigoplus_{\alpha \in F} a_{\alpha}) \leq h \oplus e = (a \oplus e) \oplus e = a$. Then $\{a_{\alpha}\}_{\alpha \in A} \cup \{b\}$ gives a contradiction with (3).

Let h be as in (i).

We claim that, if $0 < k \le h$, then there exist $c, d \in L$ such that $0 < c < d \le k$ and $2\mu(c) = \mu(d)$.

If $0 < k \leq h$, $\mu(k) \neq 0$ by (i) and, by pseudo non-injectivity, there exist $b_1, b_2 \in L$, $b_1 \perp b_2, b_1 \oplus b_2 \leq k, b_1 \neq 0$, $b_2 \neq 0$ and $\mu(b_1) = \mu(b_2)$. Then for $c := b_1$ and $d := b_1 \oplus b_2$ we have $0 < c < d \leq k$ as b_1 and b_2 are not zero and $\mu(d) = \mu(b_1) + \mu(b_2) = 2\mu(c)$.

(ii) Zorn's lemma ensures the existence of an orthogonal family $\{d_{\alpha}\}_{\alpha \in A}$ with the following properties:

- (1) for every $\alpha \in A$, $d_{\alpha} \neq 0$ and there exists c_{α} such that $0 < c_{\alpha} < d_{\alpha}$ and $2\mu(c_{\alpha}) = \mu(d_{\alpha})$;
- (2) for every finite $F \subset A$, $\bigoplus_{\alpha \in F} d_{\alpha} \leq h$;
- (3) if $\{c_{\gamma} : \gamma \in \Gamma\}$ is an orthogonal family in L with properties (1) and (2), then for every $\bar{\gamma} \in \Gamma$ the set $\{\alpha \in A : d_{\alpha} = c_{\bar{\gamma}}\} \neq \emptyset$ and $\{\gamma \in \Gamma : c_{\gamma} = c_{\bar{\gamma}}\} \subset \{\alpha \in A : d_{\alpha} = c_{\bar{\gamma}}\}.$

It is easy to see that the set $\{c_{\alpha} : \alpha \in A\}$ is orthogonal. Put $d = \bigoplus_{\alpha \in A} d_{\alpha}$ and $c = \bigoplus_{\alpha \in A} c_{\alpha}$. We get $c \neq 0$, since $c_{\alpha} \neq 0$ for every $\alpha \in A$. By (2) $d \leq h$. Moreover, as $\mu(d) = \sum_{\alpha \in A} \mu(d_{\alpha}) = 2 \sum_{\alpha \in A} \mu(c_{\alpha}) = 2\mu(c)$ and $c \leq d$, we obtain c < d.

(iii) We will show that d = h.

Suppose d < h. Then $h \ominus d \neq 0$. From above, there exist $c_1, c_2 \in L$ with $0 < c_1 < c_2 \leq h \ominus d$ and $\mu(c_2) = 2\mu(c_1)$.

We will check that $\{d_{\alpha}\}_{\alpha \in A} \cup \{c_2\}$ has the same properties as $\{d_{\alpha}\}_{\alpha \in A}$.

Since $c_2 \leq h \oplus d \leq d^{\perp} \leq (\bigoplus_{\alpha \in F} d_{\alpha})^{\perp}$ for every finite $F \subset A$, from 4.2 of [7] it follows that every finite subfamily of $\{d_{\alpha}\}_{\alpha \in A} \cup \{c_2\}$ is orthogonal and so, the family is orthogonal. Moreover, if $F \subset A$ is finite, then $c_2 \oplus (\bigoplus_{\alpha \in F} d_{\alpha}) \leq (h \oplus d) \oplus d = h$. Obviously, c_2 verifies (1). Then $\{d_{\alpha}\}_{\alpha \in A} \cup \{c_2\}$ contradicts property (3). Hence d = h.

It follows that $\mu(a) = \mu(h) = \mu(d) = 2\mu(c)$. Therefore μ is semiconvex.

Theorem 4.4. Let μ be closed and pseudo non-injective. Then $\mu(L)$ is convex.

PROOF: It is clear that we can replace L by $L/N(\mu)$ and μ by $\hat{\mu}$. Then by 4.2 we can suppose L complete, μ completely additive and $I(\mu) = \{0\}$. Hence by 4.3 μ is semiconvex.

Let $b, c \in L$ and $t \in [0, 1]$.

First, suppose $b \wedge c = 0$.

By 3.3 there exist $d, e \in L$ such that $d \leq b, e \leq c, \mu(d) = t\mu(b)$ and $\mu(e) = (1-t)\mu(c)$. Since $b \wedge c = 0$, we have $d \wedge e = 0$. It follows that $t\mu(b) + (1-t)\mu(c) = \mu(d) + \mu(e) = \mu(d \vee e) + \mu(d \wedge e) = \mu(d \vee e)$.

Now let $b, c \in L$. Put $b_1 := b \ominus (b \wedge c)$ and $c_1 = c \ominus (b \wedge c)$. By 1.8.5 of [13] we have $b_1 \wedge c_1 = 0$. Then, from above, there exist $b_2, c_2 \in L$ with $b_2 \leq b_1, c_2 \leq c_1$ and $t\mu(b_1) + (1-t)\mu(c_1) = \mu(b_2 \vee c_2)$.

Since $b = (b \land c) \oplus b_1$ and $c = (b \land c) \oplus c_1$, by 3.6 we obtain $t\mu(b) = t\mu(b_1) + t\mu(b \land c)$ and $(1-t)\mu(c) = (1-t)\mu(b \land c) + (1-t)\mu(c_1)$. It follows that $t\mu(b) + (1-t)\mu(c) = \mu(b \land c) + t\mu(b_1) + (1-t)\mu(c_1) = \mu(b \land c) + \mu(b_2 \lor c_2)$.

We claim that $b \wedge c \perp b_2 \vee c_2$. By 1.8.4 of [13] applied with $c = a \wedge b$, we obtain $b_1 \vee c_1 = (b \ominus (b \wedge c)) \vee (c \ominus (b \wedge c)) = (b \vee c) \ominus (b \wedge c)$, hence $b_2 \vee c_2 \leq b_1 \vee c_1 \leq 1 \ominus (b \wedge c) = (b \wedge c)^{\perp}$.

It follows that $\mu(b \wedge c) + \mu(b_2 \vee c_2) = \mu((b \wedge c) \oplus (b_2 \vee c_2))$ and, therefore, $t\mu(b) + (1-t)\mu(c) \in \mu(L)$.

Corollary 4.5. Let μ be closed. Then μ is pseudo non-injective iff for every $a \in L$, $\mu([0, a])$ is convex.

PROOF: \Leftarrow : From the assumptions we get that μ is semiconvex. Hence, $\hat{\mu}$ is semiconvex, too. Moreover, since μ is closed, by 4.2 we have that $L/N(\mu)$ is complete and $\hat{\mu}$ is completely additive. Since $I(\hat{\mu}) = \{\hat{0}\}$, by 4.3 we have that $\hat{\mu}$ is pseudo non-injective. We see that μ is pseudo non-injective, too. Let $a \in L \setminus I(\mu)$ and choose $b \leq a$ such that $\mu(b) \neq 0$. Since $\hat{\mu}$ is pseudo non-injective, there exist \hat{c} , \hat{d} ; \hat{c} , $\hat{d} \neq \hat{0}$, $\hat{c} \perp \hat{d}$, $\hat{c} \oplus \hat{d} \leq \hat{b}$ and $\hat{\mu}(\hat{c}) = \hat{\mu}(\hat{d})$. Then there exist c, $d \in L \setminus I(\mu)$, $c \perp d$, $c \oplus d \leq b \leq a$ and $\mu(b) = \mu(c)$.

⇒: As in 4.4 we can suppose $L = L/N(\mu)$. Let $a \in L$ and denote by μ_a the restriction of μ to [0, a]. Observe that [0, a] is a complete D-lattice and μ_a is a σ -order continuous pseudo non-injective modular measure, since $\mathcal{U}(\mu_a)$ coincides with the restriction of $\mathcal{U}(\mu)$ to [0, a] and $N(\mu_a) = N(\mu) \cap ([0, a] \times [0, a])$. Hence by 4.4 we have that $\mu([0, a])$ is convex.

References

- Avallone A., Lattice uniformities on orthomodular structures, Math. Slovaca 51 (2001), no. 4, 403–419.
- [2] Avallone A., *Liapunov modular functions*, submitted.
- [3] Avallone A., Separating points of measures on effect algebras, preprint.
- [4] Avallone A., Basile A., On a Marinacci uniqueness theorem for measures, J. Math. Anal. Appl., to appear.
- [5] Barbieri G., Lyapunov's theorem for measures on D-posets, Internat. J. Theoret. Phys., to appear.
- [6] Beltrametti E.G., Cassinelli G., The Logic of Quantum Mechanics, Addison-Wesley Publishing Co., Reading, Mass., 1981.
- [7] Bennett M.K., Foulis D.J., Effect algebras and unsharp quantum logics. Special issue dedicated to Constantin Piron on the occasion of his sixtieth birthday, Found. Phys. 24 (1994), no. 10, 1331–1352.
- [8] Bennett M.K., Foulis D.J., Phi-symmetric effect algebras, Found. Phys. 25 (1995), no. 12, 1699–172.
- [9] Butnariu D., Klement P., Triangular Norm-Based Measures and Games with Fuzzy Coalitions, Kluwer Acad. Publ., 1993.
- [10] Chovanec F., Kopka F., *D-posets*, Math. Slovaca 44 (1994), 21–34.
- [11] de Lucia P., Wright J.D.M., Group valued measures with the Lyapunoff property, Rend. Circ. Mat. Palermo (2) 40 (1991), no. 3, 442–452.

- [12] De Simone A., Navara M., Pták P., On interval homogeneous orthomodular lattices, Comment. Math. Univ. Carolinae 42 (2001), no. 1, 23–30.
- [13] Dvurečenskij A., Pulmannová S., New Trends in Quantum Structures, Mathematics and its Applications, 516, Kluwer Acad. Publ., Dordrecht; Ister Science, Bratislava, 2000.
- [14] Epstein L.G., Zhang J., Subjective probabilities on subjectively unambiguous events, Econometrica 69 ((2001)), no. 2, 265–306.
- [15] Knowles G., Liapunov vector measures, SIAM J. Control 13 (1975), 294–303.
- [16] Weber H., Uniform lattices I, II. A generalization of topological Riesz spaces and topological Boolean rings; Order continuity and exhaustivity, Ann. Mat. Pura Appl. (4) 160 (1991), 347–370 (1992); (4) 165 (1993), 133–158.
- [17] Weber H., On modular functions, Funct. Approx. Comment. Math. 24 (1996), 35–52.

UNIVERSITY OF BASILICATA, CONTRADA MACCHIA ROMANA, 85100 POTENZA, ITALY *E-mail*: avallone@pzuniv.unibas.it

UNIVERSITY OF UDINE, VIA DELLE SCIENZE 208, 33100 UDINE, ITALY *E-mail*: barbieri@dimi.uniud.it

(Received March 25, 2003, revised May 20, 2003)