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Recursively differentiable quasigroups
and complete recursive codes

V. 1zBASH, P. SYRBU

Abstract. Criteria of recursive differentiability of quasigroups are given. Complete recur-
sive codes which attains the Joshibound are constructed using recursively differentiable
k-ary quasigroups.
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Let ¢,n be positive integers and @ be a nonempty set of ¢ elements. A code
C C Q" of length n over the alphabet @ is called an [n, k]g-code if |C| = ¢". An
[n, k, d]g-code is a [n, k]g-code with the minimal Hamming distance d [1].

According to D.D. Joshi’s theorem [2], if C' is an [n, k, d]g-code, then |C] <

n=d+1 where |Q| = q.

If an [n, k, d]g-code C has the cardinal number |C| = ¢ then we say that
C attains the Joshibound. The problem of description of the parameters ¢, n and
d for which there exist [n, k, d]g-codes, where |Q| = ¢, attaining the Joshibound
is open [1].

It is known that using strong orthogonal systems of k-ary quasigroups (k > 2),
in particular, orthogonal systems of latin squares, such codes can be constructed.

For example, if {f1, f2,..., ft}, t > 2, is an orthogonal system of binary quasi-
groups defined on a set @ of ¢ elements, then

q
n—d+1

C= {(l',y, fl(xvy)va(xvy)v [ ft(xvy)) | x,y € Q}

is an [t + 2,2, + 1]g-code, so C' attains the Joshibound [2].

This article deals with complete k-recursive codes and recursive differentiability
of k-ary quasigroups.

A code C of length n over an alphabet Q is called complete k-recursive, where
1 < k < n, if there exists a mapping f : Q¥ — Q such that every code word
u = (ug,ut,...,upn—1) € C satisfies the conditions

Uitk = f(ulu Uj41y - 7ui+k—1)7

257



258 V.Izbash, P.Syrbu

for every i = 0,1,...,n — k.

A complete k-recursive code C' C Q™ defined by the mapping f is denoted by
C(n, f).

In what follows we will use the notation (z%) for (z1,...,zy).

It is proved in [1] and it is easy to see that if C(n, f) is a complete k-recursive
code over an alphabet () then

C(nvf) = {(Ilv s 7xkaf(0)(xlf_1)7 e '7f(n_k_1)(xlf)) | T1,..-, T € Q}a

where the functions f(o), f(l), ce f(”_k_l) are called k-recursive derivatives of
f and are defined as follows:

FO@Y) = fah),
FOh) = fh, FO b)),

FOER) = £k, FOER), FOEh), . fEDEh)), for t <k,
FO@ERy = p(FER kY, D @R, for ¢ > k.

A k-ary quasigroup operation f (k > 2) is called recursively s-differentiable
if its k-recursive derivatives f (0), f (1), o f () are k-ary quasigroup operations.
Let k € N, k > 2, and let f1, fo,..., fr be k-ary operations defined on a set Q.
The operations f1, fo,..., fi are called orthogonal if the system of equations
{filx1,29,...,21) = ai}le has a unique solution for every aq,...,a; € Q. It is
known and it is easy to see that the k-ary operations f1, fa,..., fz, defined on a
set ) are orthogonal if and only if the mapping

0:Q" —QF, 8(ah) = (f1(ah), fo(ah), - fi(@]) = (1. far - ) (o)
is a bijection. In this case we will denote 6 = (f1, fo,..., f1)-

A system ¥ = {f1,f2,..., ft}i>k of k-ary operations defined on a set Q
is called orthogonal if every k operations from ¥ are orthogonal. A system
{f1, f2,-.., fs}s>1 of k-ary operations defined on a set @ is called strong ortho-
gonal if the system {E1, ..., Ey, f1, f2,..., fs} is orthogonal, where E; (x]f) =z,
for every (z1,...,2;) € Q¥ and for every i = 1,2,..., k (the k-ary selectors).

It follows from the definition that each operation of a strong orthogonal system,
which is not a selector, is a quasigroup operation. Every orthogonal system of
binary quasigroups is strong orthogonal.

It is proved in [1] that a complete k-recursive code C(n,f) attains the
Joshibound if and only if the system of k-recursive derivatives {f (0), f(l), R
f("_k_l)} is strong orthogonal. In this case the k-recursive derivatives f(O), f(l),

-, f k=1 of f are k-ary quasigroup operations, so f is recursively (n—k—1)-
differentiable. The converse is not true for £ > 3. But for £ = 2 the following
criterion holds.
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Proposition 1 ([1]). A complete 2-recursive code

Cn, f) = {2y, FO,p), fV(@9),., F D (@,y) | 2,y € Q)
attains the Joshibound if an only if the 2-recursive derivatives f(o), f(l),
- f("_?’) of f are quasigroup operations.

So a complete 2-recursive code C(n, f) attains the Joshibound if and only if
the binary operation f is recursively (n — 3)-differentiable.

As was announced by G. Belyavskaya in [7] if Q(f) is a binary quasigroup then
f(i) = f6', Vi € N, where 6 is the following mapping:

0: Q2 I sz e(xvy) = (yv f(a?,y)), V(‘Tay) € Q2-

So Proposition 1 has the following algebraic meaning: a binary quasigroup
Q(f) is recursively s-differentiable (s € N) if and only if f, f0,..., f0°, where
0 = (Es, f), are quasigroup operations. The result announced in [7] is generalized
in the following proposition.

Proposition 2. If f is a k-ary operation (k > 2) then f(™ = f0" for all n € N,
where

(1) 0:QF — QF, 0(2}) = (w2,..., 2y, f(2F))

for every (2k) € QF.

Proo¥r: To prove this proposition we will use the mathematical induction.

For n = 0 and n = 1, according to the definition of k-recursive derivatives, we
have f(O) = f = f09 and f) = f(Ey,...,Ey, f) = f6.

Let us suppose that Proposition 2 is true for every n, satisfying the inequalities:
0 <n<s—1<k. Then for n = s, using this assumption, we get:

f(s) :f(E8+17"'7Ek7f(0)7"'7f(8_1)):f(E8+17'"7Ek:7f7f07"'7f08_1)
= f(Esy....Ep, [, f0,...,f0°72)0 = f05710 = f0°.
For n = k have
FO = (O p O ey = p(E, fOL f D R 2ye = roR—le = fok.

Let us suppose now that Proposition 2 is true for every n < m — 1, where
m >k + 1. Then

Fm) = p(pm=k) | pm=2) p(m=1)y
= (k=D pmeS) M2y By By, f) = 0T = O™

So Proposition 2 is true for every n € N. O
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Corollary. Let Q(f) be an k-ary quasigroup, k > 2 and s € N. If {f, f0,...,
f0%}, where 6 is the mapping defined in (1), is a strong orthogonal system of
k-ary operations then Q(f) is recursively s-differentiable.

As was shown above for k = 2 the converse of this corollary is true as well.

Proposition 3. Let Q(f) be an k-ary quasigroup, k > 2. Every k+1 consecutive
k-recursive derivatives {f(0), fi+1)  f@+k)} of f are orthogonal.

ProoF: If Q(f) is an k-ary quasigroup, k > 2, then the system ¥ = {Fjy,...,
Ey, f} is orthogonal, so its subsystem {F»,..., F}, f} is orthogonal as well, i.e.
the mapping

0:QF — QF, 0(ah) = (x2,...,7p, f(2F)), V(aF) € QF,

is a bijection. Hence each of the following systems is orthogonal:

Y0 = {Es,...,Ey, f, f0} = {Ea, ..., Ep, fO, D},
%02 = {E3,...,Ey, f, 0, f6%} = {Es,... By, fO, fO @y
S6F 1 = {Eg, £, £6,. .., [0} = { By, O, 5D, pEEDY
S0F = {f,£0,..., f6Fy = {fO O k]

and

$0° = {f0°7F, ... 105} = {FCTR L rOy,

for every s > k + 1. O

Corollary 1. A binary quasigroup Q(f) is recursively 1-differentiable if and only
if the pair of operations {Ey, fV} is orthogonal.

PRrROOF: As {F1,Es, f} is an orthogonal system, the mapping § = (Eq, f) is a
bijection and the system {Ea, f, f(0} = {E1, Ea, f}6 is orthogonal too. Hence,
f(l) is a quasigroup operation if and only if the pair {F1, f(l)} is orthogonal. [J

Corollary 2. A ternary quasigroup Q(f) is recursively 1-differentiable iff the
systems of ternary operations {E1, Ea, f(l)} and {E1, E3, f(l)} are orthogonal.

n

Let Q(-) be a binary group and let denote by (A) the n-th 2-recursive derivative
of (-), for every n € N.



Recursively differentiable quasigroups and complete recursive codes 261

Lemma 1. If Q(-) is an abelian group, then for all z,y € @ and n € N the
following equality holds:

(2) zAy = gbrybnit

where (bn)nen is the Fibonacci sequence.

ProoF: We will use the mathematical induction.

0 0
For n =0 have Ay = z -y so zAy = xb0 . 01,
1

br . b2

Forn=1havezAy =y -2y =xz-y2 =2l .y
Suppose that Lemma 1 is true for every n < k. Using this assumption and the
definition of the Fibonacci sequence, for n = k + 1 we get

k+1 k—1 k b b b b
v Ay=(rAy)(rly)=ax"k1. g% . g% . gy7k+1

— pbe—1+bk .ybk+bk+1 — pbrt1 .ybk+2'

So the equality (2) is true for every z,y € @ and for every n € N. O

Theorem 1. A binary abelian group Q(-) is recursively s-differentiable, where
s > 1, if and only if the mappings © +— 2% where (bn)nen is the Fibonacci
sequence, are bijections for all i € {0,1,2,...,s+ 1}.

PROOF: According to the definition a group Q(-) is recursively s-differentiable if
1 2 s
and only if its 2-recursive derivatives (A), (A), ..., (A) are quasigroup operations.
%
Hence Q(-) is recursively s-differentiable if and only if each of the equations 2Aa =

1
¢, alNy = ¢, i € {0,1,2,...,s}, has a unique solution for every a,c € Q. Now,

1
using the equalities (2) we get: zAa = ¢ < 2 - ¥+ = c o zbi = ¢.a7%+1 and

b

(2
aly = c & yb”l cat =c & ybi+1 =c-ab for every a,c € () and for every

1 2 s
i€{0,1,2,...,s}. So (A),(A),...,(A) are quasigroup operations if and only if
the mappings x — 2%, where (b;);en is the Fibonacci sequence, are bijections for
every i € {0,1,2,...,s+1}. O

Proposition 4. If Q(-) is an arbitrary recursively s-differentiable binary group,
where s > 1, then the mappings x — x| where (b;);en is the Fibonacci sequence,
are bijections for all i € {0,1,2,...,s+ 1}.

PRrROOF: If Q() is recursively s-differentiable, with unit e, then each of the equa-

K] (]
tions eAx = ¢ and yAe = ¢, i € {0,1,2,...,s}, has a unique solution. So as
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7 7
eAx = ¢ zbitl = ¢ and yAe = ¢ < yb = ¢, we get that each of the mappings
z—ab, ie{0,1,2,...,5+ 1}, is a bijection. O

When s = 1 Theorem 1 is true for an arbitrary binary group as we can see
from the following proposition.
Proposition 5. A binary group Q(-) is recursively 1-differentiable if and only if
the mapping = — 22 is a bijection.
PROOF: According to the definition, a binary group Q(-) is recursively 1-differenti-

1
able if and only if its 2-recursive derivative (A) is a quasigroup operation. So as

1
al\x =b & x-ax = b < rara = ba < (za)? = ba, for every a,b € Q, we get that
1
the mapping z — 22 is a bijection if and only if the equation aA(za_l) = b has

a unique solution z for every a,b € Q.
1
From the equivalences tAa =b < a-za =b < = = a 'ba~! it follows that in
1
a binary quasigroup Q(-) the equation z/Aa = b has always a unique solution for

1
every a,b € Q. So if Q(-) is a group then Q(A) is a quasigroup if and only if the
mapping z — 22 is a bijection. O

Corollary. A finite binary group is recursively 1-differentiable if and only if it is
of odd order.

Indeed, it is known [3] that a finite group is of odd order if and only if the
mapping z +— 2isa bijection.

1
Proposition 6. If Q(-) is a binary group with unit e, then Q(/\) is a semigroup
if and only if x? = e, for every x € Q.

1 1 1 1
PROOF: So as (zAy)Az = zyxyz and 2A(yAz) = zyzxzyz, for all z,y, 2z € Q, we
1
get that the operation (A) is associative if and only if z = zxz, for every z, z € Q.

Taking z = e in the last equality we get 22 = e, for all z € Q. Conversely, if

w?=e¢,forallzeQ, thenz=2"landzz-zz =e,Va,2 € Q,s0 zaz =21 =z,

1
for all 2,z € Q, i.e. (A) is associative. O
Corollary. If Q(-) is a nontrivial recursively 1-differentiable group then its 2-
1
recursive derivative Q(A\) cannot be a group.
1
PRrOOF: Indeed, if Q(-) is recursively 1-differentiable and Q(A) is a group, then

according to Proposition 5, the mapping z — 22 is a bijection and by Proposition 6
we get |Q| = 1. O
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