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Recursively differentiable quasigroups

and complete recursive codes

V. Izbash, P. Syrbu

Abstract. Criteria of recursive differentiability of quasigroups are given. Complete recur-
sive codes which attains the Joshibound are constructed using recursively differentiable
k-ary quasigroups.
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Let q, n be positive integers and Q be a nonempty set of q elements. A code
C ⊆ Qn of length n over the alphabet Q is called an [n, k]Q-code if |C| = qk. An
[n, k, d]Q-code is a [n, k]Q-code with the minimal Hamming distance d [1].
According to D.D. Joshi’s theorem [2], if C is an [n, k, d]Q-code, then |C| ≤

qn−d+1, where |Q| = q.

If an [n, k, d]Q-code C has the cardinal number |C| = qn−d+1 then we say that
C attains the Joshibound . The problem of description of the parameters q, n and
d for which there exist [n, k, d]Q-codes, where |Q| = q, attaining the Joshibound
is open [1].
It is known that using strong orthogonal systems of k-ary quasigroups (k ≥ 2),

in particular, orthogonal systems of latin squares, such codes can be constructed.
For example, if {f1, f2, . . . , ft}, t ≥ 2, is an orthogonal system of binary quasi-

groups defined on a set Q of q elements, then

C = {(x, y, f1(x, y), f2(x, y), . . . , ft(x, y)) | x, y ∈ Q}

is an [t+ 2, 2, t+ 1]Q-code, so C attains the Joshibound [2].
This article deals with complete k-recursive codes and recursive differentiability

of k-ary quasigroups.
A code C of length n over an alphabet Q is called complete k-recursive, where

1 ≤ k ≤ n, if there exists a mapping f : Qk −→ Q such that every code word
u = (u0, u1, . . . , un−1) ∈ C satisfies the conditions

ui+k = f(ui, ui+1, . . . , ui+k−1),
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for every i = 0, 1, . . . , n − k.
A complete k-recursive code C ⊆ Qn defined by the mapping f is denoted by

C(n, f).

In what follows we will use the notation (xk
1) for (x1, . . . , xk).

It is proved in [1] and it is easy to see that if C(n, f) is a complete k-recursive
code over an alphabet Q then

C(n, f) = {(x1, . . . , xk, f (0)(xk−1
1 ), . . . , f (n−k−1)(xk

1)) | x1, . . . , xk ∈ Q},

where the functions f (0), f (1), . . . , f (n−k−1) are called k-recursive derivatives of
f and are defined as follows:

f (0)(xk
1) = f(xk

1),

f (1)(xk
1) = f(xk

2 , f
(0)(xk

1)),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

f (t)(xk
1) = f(xk

t+1, f
(0)(xk

1), f
(1)(xk

1), . . . , f
(t−1)(xk

1)), for t < k,

f (t)(xk
1) = f(f (t−k)(xk

1), . . . , f
(t−1)(xk

1)), for t ≥ k.

A k-ary quasigroup operation f (k ≥ 2) is called recursively s-differentiable

if its k-recursive derivatives f (0), f (1), . . . , f (s) are k-ary quasigroup operations.
Let k ∈ N, k ≥ 2, and let f1, f2, . . . , fk be k-ary operations defined on a set Q.
The operations f1, f2, . . . , fk are called orthogonal if the system of equations
{fi(x1, x2, . . . , xk) = ai}

k
i=1 has a unique solution for every a1, . . . , ak ∈ Q. It is

known and it is easy to see that the k-ary operations f1, f2, . . . , fk, defined on a
set Q are orthogonal if and only if the mapping

θ : Qk → Qk, θ(xk
1) = (f1(x

k
1), f2(x

k
1), . . . , fk(x

k
1)) = (f1, f2, . . . , fk)(x

k
1)

is a bijection. In this case we will denote θ = (f1, f2, . . . , fk).
A system Σ = {f1, f2, . . . , ft}t≥k of k-ary operations defined on a set Q

is called orthogonal if every k operations from Σ are orthogonal. A system
{f1, f2, . . . , fs}s≥1 of k-ary operations defined on a set Q is called strong ortho-

gonal if the system {E1, . . . , Ek, f1, f2, . . . , fs} is orthogonal, where Ei(x
k
1) = xi,

for every (x1, . . . , xk) ∈ Qk and for every i = 1, 2, . . . , k (the k-ary selectors).
It follows from the definition that each operation of a strong orthogonal system,

which is not a selector, is a quasigroup operation. Every orthogonal system of
binary quasigroups is strong orthogonal.
It is proved in [1] that a complete k-recursive code C(n, f) attains the

Joshibound if and only if the system of k-recursive derivatives {f (0), f (1), . . . ,

f (n−k−1)} is strong orthogonal. In this case the k-recursive derivatives f (0), f (1),

. . . , f (n−k−1) of f are k-ary quasigroup operations, so f is recursively (n−k−1)-
differentiable. The converse is not true for k ≥ 3. But for k = 2 the following
criterion holds.
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Proposition 1 ([1]). A complete 2-recursive code

C(n, f) = {(x, y, f (0)(x, y), f (1)(x, y), . . . , f (n−3)(x, y)) | x, y ∈ Q}

attains the Joshibound if an only if the 2-recursive derivatives f (0), f (1),

. . . , f (n−3) of f are quasigroup operations.

So a complete 2-recursive code C(n, f) attains the Joshibound if and only if
the binary operation f is recursively (n − 3)-differentiable.
As was announced by G. Belyavskaya in [7] if Q(f) is a binary quasigroup then

f (i) = fθi, ∀ i ∈ N, where θ is the following mapping:

θ : Q2 −→ Q2, θ(x, y) = (y, f(x, y)), ∀ (x, y) ∈ Q2.

So Proposition 1 has the following algebraic meaning: a binary quasigroup
Q(f) is recursively s-differentiable (s ∈ N) if and only if f, fθ, . . . , fθs, where
θ = (E2, f), are quasigroup operations. The result announced in [7] is generalized
in the following proposition.

Proposition 2. If f is a k-ary operation (k ≥ 2) then f (n) = fθn for all n ∈ N,

where

(1) θ : Qk −→ Qk, θ(xk
1) = (x2, . . . , xk, f(xk

1))

for every (xk
1) ∈ Qk.

Proof: To prove this proposition we will use the mathematical induction.
For n = 0 and n = 1, according to the definition of k-recursive derivatives, we

have f (0) = f = fθ0 and f (1) = f(E2, . . . , Ek, f) = fθ.
Let us suppose that Proposition 2 is true for every n, satisfying the inequalities:

0 ≤ n ≤ s − 1 < k. Then for n = s, using this assumption, we get:

f (s) = f(Es+1, . . . , Ek, f (0), . . . , f (s−1)) = f(Es+1, . . . , Ek, f, fθ, . . . , fθs−1)

= f(Es, . . . , Ek, f, fθ, . . . , fθs−2)θ = fθs−1θ = fθs.

For n = k have

f (k) = f(f (0), f (1), . . . , f (k−1)) = f(Ek, f (0), f (1), . . . , f (k−2))θ = fθk−1θ = fθk.

Let us suppose now that Proposition 2 is true for every n ≤ m − 1, where
m ≥ k + 1. Then

f (m) = f(f (m−k), . . . , f (m−2), f (m−1))

= f(f (m−k−1), . . . , f (m−3), f (m−2))(E2, . . . , Ek, f) = fθm−1θ = fθm.

So Proposition 2 is true for every n ∈ N. �
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Corollary. Let Q(f) be an k-ary quasigroup, k ≥ 2 and s ∈ N. If {f, fθ, . . . ,

fθs}, where θ is the mapping defined in (1), is a strong orthogonal system of
k-ary operations then Q(f) is recursively s-differentiable.

As was shown above for k = 2 the converse of this corollary is true as well.

Proposition 3. Let Q(f) be an k-ary quasigroup, k ≥ 2. Every k+1 consecutive

k-recursive derivatives {f (i), f (i+1), . . . , f (i+k)} of f are orthogonal.

Proof: If Q(f) is an k-ary quasigroup, k ≥ 2, then the system Σ = {E1, . . . ,
Ek, f} is orthogonal, so its subsystem {E2, . . . , Ek, f} is orthogonal as well, i.e.
the mapping

θ : Qk −→ Qk, θ(xk
1) = (x2, . . . , xk, f(xk

1)), ∀ (xk
1) ∈ Qk,

is a bijection. Hence each of the following systems is orthogonal:

Σθ = {E2, . . . , Ek, f, fθ} = {E2, . . . , Ek, f (0), f (1)},

Σθ2 = {E3, . . . , Ek, f, fθ, fθ2} = {E3, . . . , Ek, f (0), f (1), f (2)}, . . . ,

Σθk−1 = {Ek, f, fθ, . . . , fθk−1} = {Ek, f (0), f (1), . . . , f (k−1)},

Σθk = {f, fθ, . . . , fθk} = {f (0), f (1), . . . , f (k)}

and

Σθs = {fθs−k, . . . , fθs} = {f (s−k), . . . , f (s)},

for every s ≥ k + 1. �

Corollary 1. A binary quasigroupQ(f) is recursively 1-differentiable if and only

if the pair of operations {E1, f
(1)} is orthogonal.

Proof: As {E1, E2, f} is an orthogonal system, the mapping θ = (E2, f) is a

bijection and the system {E2, f, f (1)} = {E1, E2, f}θ is orthogonal too. Hence,

f (1) is a quasigroup operation if and only if the pair {E1, f
(1)} is orthogonal. �

Corollary 2. A ternary quasigroup Q(f) is recursively 1-differentiable iff the

systems of ternary operations {E1, E2, f
(1)} and {E1, E3, f

(1)} are orthogonal.

Let Q(·) be a binary group and let denote by (
n
△) the n-th 2-recursive derivative

of (·), for every n ∈ N.
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Lemma 1. If Q(·) is an abelian group, then for all x, y ∈ Q and n ∈ N the

following equality holds:

(2) x
n

△y = xbnybn+1

where (bn)n∈N is the Fibonacci sequence.

Proof: We will use the mathematical induction.

For n = 0 have x
0
△y = x · y so x

0
△y = xb0 · yb1 .

For n = 1 have x
1
△y = y · xy = x · y2 = xb1 · yb2 .

Suppose that Lemma 1 is true for every n ≤ k. Using this assumption and the
definition of the Fibonacci sequence, for n = k + 1 we get

x
k+1
△ y = (x

k−1
△ y)(x

k
△y) = xbk−1 · ybk · xbk · ybk+1

= xbk−1+bk · ybk+bk+1 = xbk+1 · ybk+2 .

So the equality (2) is true for every x, y ∈ Q and for every n ∈ N. �

Theorem 1. A binary abelian group Q(·) is recursively s-differentiable, where

s ≥ 1, if and only if the mappings x 7→ xbi , where (bn)n∈N is the Fibonacci

sequence, are bijections for all i ∈ {0, 1, 2, . . . , s+ 1}.

Proof: According to the definition a group Q(·) is recursively s-differentiable if

and only if its 2-recursive derivatives (
1
△), (

2
△), . . . , (

s

△) are quasigroup operations.

Hence Q(·) is recursively s-differentiable if and only if each of the equations x
i
△a =

c, a
i

△y = c, i ∈ {0, 1, 2, . . . , s}, has a unique solution for every a, c ∈ Q. Now,

using the equalities (2) we get: x
i
△a = c ⇔ xbi · abi+1 = c ⇔ xbi = c · a−bi+1 and

a
i

△y = c ⇔ ybi+1 · abi = c ⇔ ybi+1 = c · a−bi for every a, c ∈ Q and for every

i ∈ {0, 1, 2, . . . , s}. So (
1
△), (

2
△), . . . , (

s
△) are quasigroup operations if and only if

the mappings x 7→ xbi , where (bi)i∈N is the Fibonacci sequence, are bijections for
every i ∈ {0, 1, 2, . . . , s+ 1}. �

Proposition 4. If Q(·) is an arbitrary recursively s-differentiable binary group,

where s ≥ 1, then the mappings x 7→ xbi , where (bi)i∈N is the Fibonacci sequence,

are bijections for all i ∈ {0, 1, 2, . . . , s+ 1}.

Proof: If Q(·) is recursively s-differentiable, with unit e, then each of the equa-

tions e
i
△x = c and y

i
△e = c, i ∈ {0, 1, 2, . . . , s}, has a unique solution. So as
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e
i
△x = c ⇔ xbi+1 = c and y

i
△e = c ⇔ ybi = c, we get that each of the mappings

x 7→ xbi , i ∈ {0, 1, 2, . . . , s+ 1}, is a bijection. �

When s = 1 Theorem 1 is true for an arbitrary binary group as we can see
from the following proposition.

Proposition 5. A binary group Q(·) is recursively 1-differentiable if and only if
the mapping z 7→ z2 is a bijection.

Proof: According to the definition, a binary groupQ(·) is recursively 1-differenti-

able if and only if its 2-recursive derivative (
1
△) is a quasigroup operation. So as

a
1
△x = b ⇔ x · ax = b ⇔ xaxa = ba ⇔ (xa)2 = ba, for every a, b ∈ Q, we get that

the mapping z 7→ z2 is a bijection if and only if the equation a
1
△(za−1) = b has

a unique solution z for every a, b ∈ Q.

From the equivalences x
1
△a = b ⇔ a · xa = b ⇔ x = a−1ba−1 it follows that in

a binary quasigroup Q(·) the equation x
1
△a = b has always a unique solution for

every a, b ∈ Q. So if Q(·) is a group then Q(
1
△) is a quasigroup if and only if the

mapping z 7→ z2 is a bijection. �

Corollary. A finite binary group is recursively 1-differentiable if and only if it is
of odd order.

Indeed, it is known [3] that a finite group is of odd order if and only if the
mapping z 7→ z2 is a bijection.

Proposition 6. If Q(·) is a binary group with unit e, then Q(
1
△) is a semigroup

if and only if x2 = e, for every x ∈ Q.

Proof: So as (x
1
△y)

1
△z = zyxyz and x

1
△(y

1
△z) = zyzxzyz, for all x, y, z ∈ Q, we

get that the operation (
1
△) is associative if and only if x = zxz, for every x, z ∈ Q.

Taking x = e in the last equality we get z2 = e, for all z ∈ Q. Conversely, if
x2 = e, for all x ∈ Q, then x = x−1 and xz ·xz = e, ∀x, z ∈ Q, so zxz = x−1 = x,

for all x, z ∈ Q, i.e. (
1
△) is associative. �

Corollary. If Q(·) is a nontrivial recursively 1-differentiable group then its 2-

recursive derivative Q(
1
△) cannot be a group.

Proof: Indeed, if Q(·) is recursively 1-differentiable and Q(
1
△) is a group, then

according to Proposition 5, the mapping z 7→ z2 is a bijection and by Proposition 6
we get |Q| = 1. �
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