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Note on the classification theorems of g-natural metrics on
the tangent bundle of a Riemannian manifold (M, g)

MoHAMED TAHAR KADAOUI ABBASSI

Abstract. In [7], it is proved that all g-natural metrics on tangent bundles of m-dimen-
sional Riemannian manifolds depend on arbitrary smooth functions on positive real
numbers, whose number depends on m and on the assumption that the base manifold
is oriented, or non-oriented, respectively. The result was originally stated in [8] for the
oriented case, but the smoothness was assumed and not explicitly proved. In this note,
we shall prove that, both in the oriented and non-oriented cases, the functions generating
the g-natural metrics are, in fact, smooth on the set of all nonnegative real numbers.
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If (M, g) is an m-dimensional Riemannian manifold, then we use the terminol-
ogy of “g-natural metrics” (cf. [2]) on the tangent bundle T M to describe metrics
on TM which come from g by a first order natural operator ([8] and [7]). We
have studied these metrics in [1], [2] and [3]. The well-known example of such
metrics is the Sasaki metric ¢° [11]. All natural metrics are characterized by the
following result:

Theorem 1 ([8]). There is a bijective correspondence between natural (possibly
degenerated) metrics G on the tangent bundles of (oriented) Riemannian mani-
folds and the triples of first order natural F-metrics ((1,(2,(3), where (1 and (3
are symmetric. The correspondence is given by

G=¢+G+3,
where (%, ¢ and ¢V denote the Sasaki lift, the horizontal lift and the vertical lift
of (, respectively.

For the definitions of F-metrics and their lifts, we refer to [8] (see also [7] for
more details on the concept of naturality).

It is proved, furthermore, in [7] that all first order natural F-metrics on (ori-
ented) Riemannian manifolds form a family parameterized by some arbitrary
smooth function on positive real numbers, where the number of functions de-
pends on the dimensions of manifolds (the result was originally stated in [8] for
the oriented case, but the smoothness was assumed and not explicitly proved).
Precisely, with the notations of [7], we have
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Theorem 2 ([7]). 1) All first order natural F-metrics { on non-oriented Riemann-
ian manifolds of dimension m > 1 form a family parametrized by two arbitrary
smooth functions «, 3 : (0,00) — R in the following way: For every Riemannian
manifold (M, g) and tangent vectors u, X,Y € M,

(1) C(M,g) (W)(X,Y) = alg(u,u)g(X,Y) + B(g(u, u))g(u, X)g(u,Y).

If m =1, then the same assertion holds, but we can always choose 3 = 0.
In particular, all first order natural F-metrics are symmetric.

2) On oriented Riemannian manifolds, we have the same results for dimensions
m =1 and m > 3, but for m = 2 and m = 3, there exist other arbitrary smooth
functions ¢, v and 4 : (0,00) — R such that:
If m = 3, then

(2) C(M,g) (W (X,Y) = a(g(u, u)g(X,Y) + B(g(u, u))g(u, X)g(u,Y)
(9(u, u))g(u, X X Y),

where X means the vector cross-product.
If m = 2, then

((M,g) (W) (X, Y) = alg(u, u))g(X,Y) + B(g(u, u))g(u, X)g(u,Y)
( X)g(w,Y) + g(u, X)g(j9(u),Y))
8(g(u, ) (g(J? (u), X)g(u,Y) = g(u, X)g(57(u),Y)),

where J9 is the canonical almost complex structure on (M, g).

Actually, the arbitrary parameterizing functions are smooth on all the set of
nonnegative real numbers:

Theorem 3. All basic functions from Theorem 2 can be prolonged, in fact, to
smooth functions on the set Rt of all nonnegative real numbers.

PROOF: Note that we will use the technique from [7] throughout the whole proof.

1) Using the same arguments as in [7], we have to discuss all O(m)-equivariant
maps ¢ : R™ — R™*@R™*. Denote by ¢° = > da' @da’ the canonical Euclidean
metric, and by | | the induced norm. Each vector v € R™ can be transformed
in |v %b by an element of O(m). Hence ¢ is determined by its values on the
one-dimensional subspace spanned by %b Moreover, we can also change the
orientation of the first axis by an element of O(m), i.e., we have to define ¢ only
on {t2[o, t > 0}.

Let us define a smooth map £ : R — R™ @ R™* by £(¢) = {(t%b) €
R™ @ R™* for all t € R, and consider the group K, of all linear orthogonal
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transformations keeping %ﬂo fixed. So for t € RT (or generally R), the tensor
&(t) is Kyp-invariant. On the other hand, every such smooth & on RT determines
a natural F-metric.

So let us assume sijdxi ® da? is Kp-invariant. Since we can change the ori-
entation of any coordinate axis, except the first one, by elements of K,,, then
sij; = 0 for i # j. Further we can exchange any couple of coordinate axes different
from the first one by elements of Ky,, and so s;; = sj;, for all 7 # 1 and j # 1.
Hence all K,,-invariant tensors are of the form

(4) vdrt @ dz' + figP,

the reals i and ¥ being independent, if m > 1. In dimension 1, all Ki-invariant
tensors are of the form jig® = fidz! ® dz!.
Thus, our mapping & is defined by

(5) £(t) = o(t)da' @ dat + fu(t)g°,

for all t € R, where i and 7 are arbitrary smooth functions on R (and they reduce
to one function if m = 1).

For t = 0, since ¢ is O(m)-invariant, then the tensor £(0) is O(m)-invariant and
so it is a multiple of g0 (cf. [6, I; p. 277]). It follows, by virtue of (5) that 7(0) = 0.
On the other hand, if we consider the linear orthogonal transformation A, which
changes the orientation of the first coordinate axis, then the equivariance of ¢ by
Ap, implies that for every ¢t € R, a(—t) = f(t) and v(—t) = v(t), i.e., i and U are
even.

Now, given v = t%b, t > 0, we can write

(rm o) (V)(X,Y) = £(|v])(X,Y)
= a(lo)g’(X,Y) + 2(Jo]) [v] 72 ¢°(v, X)g° (v, Y).

To complete the proof, we need the following lemma.

Lemma 4 ([4]). Let f : R — R be a smooth function.

(a) If f is even, then there exists a smooth function g : RT™ — R such that

f(t) = £(0) + t2.9(t?) for any t.
(b) If f is odd, then there exists a smooth function g : R™ — R such that

f(t) = t.(f(0) + t2.g(t?)) for any t.

Let us define the functions u(t) and v(t) by v(t) = t~1o(y/t) and u(t) = a(v/1),
for all ¢ > 0. The functions p and v being clearly smooth on the set of positive
real numbers, it remains to prove that they prolong to smooth functions on RT.
For this, applying (a) of Lemma 4 to i and 7, there exist two smooth functions
a, B : RT — R, such that ji(t) = (0)+t2a(t?) and 7(t) = 7(0)+t28(t?) = t23(t%)
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(since 7(0) = 0), for all t € RT. We deduce that u(t) = i(v/t) = 1(0) +ta(t) and
v(t) = t~1o(\/t) = B(t), for all t > 0. In other words, s and v coincide on R}
with two smooth functions on R, and the formula (1) of Theorem 2 is extended
to RT. Obviously, every such operator is natural and 1) of the Theorem is proved.

2) For the oriented situation, when m > 3 and m = 1, the same proof remains
valid if we replace K;, by K;‘Ib := Ky, NSO(m) and Ay, by the element By, of
SO(m) which changes the orientations of the first and the second axes.

It remains to extend the formulas (2) and (3) from Theorem 2 to R*. We can
use a similar procedure as before.

For m = 3, let us assume s,'jdzi ® dal is K?")" -invariant. If we change the
orientation of any coordinate axis, different from the first one, by an element of
K;' , then we must change the orientation of the other. It follows that sj9 =
s21 = 813 = s31 = 0. Further the element of Kg' which exchanges the couple of
second and third coordinate axes must change the orientation of one of them, and
S0 S92 = s33 and so3 = —s32. Hence all K?"f—invariant tensors are of the form

(6) vda' @ da' + fig? + R(da? ® da® — da® @ da?),
the reals fi, 7 and & being independent. Thus, our mapping £ is defined by
(7) £(t) = o(t)dat @ dat + (1) g° + R (t)(da? @ dad — dad @ da?),

for all t € R, where fi, 7 and R are arbitrary smooth functions on R. By similar
arguments as in 1) we have 7(0) = %(0) = 0 and also, if we consider the equiv-
ariance of ¢ by Bs, then we deduce that the functions 7 and 7 are even and that
the function & is odd.

Asin 1), let us define pu(t), v(t) and x(t) by u(t) = a(vV1), v(t) = t~1o(v/t) and
k(t) = t~1/2K(\V/1) for all t > 0. The functions y, v and « being clearly smooth on
the set of positive real numbers, it remains to prove that they prolong to smooth
functions on RT. But we can just apply (a) of Lemma 4 to i and 7 and (b) of
Lemma 4 to K, and the result follows.

For m = 2, we have K := Ky N SO(2) = {I,—I5}, where I denotes the
identity matrix in GL(2). Since every tensor in R™* @ R™* is K;' -invariant, all
K ;‘ -invariant tensors are of the form

(8) wda' @ dzt + g + Ada! @ da? + da® @ dzt) + 7(dzt © da? — da® @ dat),
the reals i, 7, A and 7 being independent. Thus, our mapping ¢ is defined by

9) (1) = P(t)da’ © di + i(1)”
+ 7(t)(dz?® @ da! + dzt @ dz?)
+ (1) (d2? © dat — dzt © da?),



Note on the classification theorems of g-natural metrics ...

for all t € R, where i, 7, A and 7 are arbitrary smooth functions on R. By similar
arguments as in 1) we have 7(0) = A\(0) = 7(0) = 0 and also all the functions i,
7, A and 7 are even (it suffices to take the equivariance of ¢ by —1I5).

Asin 1), let us define pu(t), v(t), A(t) and 7(t) by u(t) = a(V1), v(t) = t 1o (V1),
A(t) = t7IN(V1) and 7(t) = t~17(y/1) for all t > 0. The functions u, v, A and 7
being clearly smooth on the set of positive real numbers, it remains to prove that
they prolong to smooth functions on R*. But we can just apply (a) of Lemma 4
to the functions fi, 7, A and 7 and the result follows. (|

Combining Theorems 1-3, we obtain for the non-oriented case (an analogous
result can be stated for the oriented case):

Corollary 5. Let (M,g) be a non-oriented Riemannian manifold and G be a
g-natural metric on TM. Then there are smooth functions o;, ; : RT — R,
1 =1,2,3, such that for every u, X,Y € M, we have

Gy (X", YY) = (01 + a3)(r?)g2(X,Y)

+(B1 + B3)(r?) g (X, u)ge (Y, u),
(10) Gloa) (X" V") = a2(r?)g0(X,Y) + B2(r) g2 (X, w) g (Y, ),
G o) (XU, YM) = ag(r?)g2(X,Y) + Ba(r?)ga (X, u) gz (Y, w),
G o)XY, YY) = a1(r?)gz(X,Y) + B1(r?) g2 (X, u) gz (Y, ),

where 12 = gz (u, u).
For m = 1, the same holds with 3; =0,i=1,2,3.
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