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On the points of non-differentiability of convex functions

DaviD PAavLIicA

Abstract. We characterize sets of non-differentiability points of convex functions on R™.
This completes (in R™) the result by Zajicek [2] which gives a characterization of the
magnitude of these sets.
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In the present paper we give a complete characterization of sets of non-diffe-
rentiability points of convex functions on R". For a convex function f on R", 0 <
kE <mn, S(f) is the set of all z € R™ for which dimdf(x) > n —k (0f(x) denotes
the subdifferential of f at the point x). In [2] the following characterization of
the magnitude of Si(f) is given.

Definition 1. A set S C R” is called a d-convex surface of dimension k (k =
1,...,n—1) if there exists a permutation 7 of the numbers 1,2,...,n and 2n —2k
convex functions fx41,9k+1,-- -, fn, gn defined on the whole space R* such that

S = {(1‘1, . ,LL‘n) eR™: LL‘F(]) = fj(‘rw(l)ﬂ . 7x7r(k)) — gj(‘rw(l)7 . ,xﬂ(k))
forj=k+1,...,n}

Theorem Z. A set M C R" is a subset of the set Si(f) (1 < k <n—1) for
some convex function f defined on R™ iff M can be covered by countably many
0-convex surfaces of dimension k.

It is known that, for any convex function f: R™ — R, Si(f) is a Fy-set. We
shall prove the following theorem.

Theorem. Let 1 < k < n —1, P be an F,y-subset of a countable union of J-
convex surfaces of dimension k. Then there exists a convex function f: R™ — R
such that S, (f) = P and f is differentiable at all points of R™\ P.

In the proof we shall use the notion of a dual convex function.
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Definition. Let f: R™ — RU {+00} be a convex function. The dual function
f* of the function f is defined on (R™)* by

fr@®) = sup ((z,2") — f(z)), 2" € R")"
zeR?

It follows immediately from the definition that if f,g: R™ — R are convex
functions, f < g and f* is finite everywhere then g* is finite everywhere.

As usual, we identify the dual space (R™)* with R™ and (-,-) denotes both
duality and scalar product.

Facts. If f: R™ — R is a convex function then
W) () = .
(2) z* € Of(x) & x € f*(z*),
(3) if f* is finite on R™, then the epigraph of f contains no non-vertical
halflines.

The statement (1) can be found in [1, Theorem 12.2], (2) in [1, Theorem 23.5]
and (3) in [1, Corollary 13.3.1].

Fact (4). A closed convex set in R™ containing no halflines is bounded.
Fact (4) can be easily proved by a compactness argument.

Fact (5). If f* is finite on R"™, then for each affine functional m, the set {x €
R™: f(x) < w(x)} is bounded.

Fact (5) is a consequence of Facts (3) and (4).

If a convex function f: R™ — R is not differentiable at some point x then
there exist x* # y*, 2*,y* € 0f(x), and therefore, by the fact (2), z € 9f*(z*) N
Of*(y*). Consequently there is a line segment on the graph of f* with endpoints
(z*, f*(z*)), (y*, f*(y*)). Conversely, if there is a line segment on the graph of
f* with a supporting linear functional (z,-) (it means that for some o € R the
graph of (z,-) + « contains this line segment and (x,-) + a < f*) then f is not
differentiable at x.

In particular, the dual function of a strictly convex function is differentiable
everywhere.

In the proof of our theorem we need the following simple lemma.

Lemma 1. Let T be a compact convex set in R"™ with a non-empty interior,
h: T — R a convex function, hlgr = 0 and h(z) < 0 for some x € T. Then there
exists a convex function h: T — R such that h|gp =0, h > h on T and h is affine
on no line segment in int T'.

PrROOF: For a compact convex set C' in R™ such that 0 € int C, denote

F|C) :i=inf{p >0:y € pC}, yeR™
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By [1, §15] v(-|C) is a convex function (therefore it is continuous), obviously it is
positively homogenous and equal to 1 on 9C.
Let us denote for x € int T

hy(2) := —h(z) (v(z —z|T —x) —1), zeR™

For z # z denote r;(z) the point of intersection of 9T and the halfline starting
at x and containing z. It is easy to check that

y—z

YT F LeimtT, y e R\ {z).
P e

() =2+

For y = 2z — x we get

Z—X

——, ,z €intT, .
Y=l —2) T,z € in T Fz

rz(2) =712(y) = 2 +

Hence, for z € int T, g(z) = rz(z) is a continuous mapping on int T\ {z}.
Clearly hg is convex, hy =0 on 9T, hy < Oon intT, hy > h on T, and hy is
affine on every halfline starting at the point z.
If y # x # z and hy is affine on conv{y, z} then it is affine on
conv{z,r,(y),rz(2)} and therefore conv{ry(y),rz(z)} C IT.

We choose a countable dense set x1,x2,... € intT and set
o0
_ ha,
=1

Then obviously » > h on T and h|gr = 0.
For a contradiction let us suppose h is affine on some line segment conv{y, z},
y # 2z, y,z € it T. Then, for each i, hy, is affine on conv{y, z}. We choose a

sequence {xkl} such that x, — ﬂf for ¢ — oco. Then we have
conv {T-'Eki (), T2y, (z)} c oT.
Letting ¢ — oo we get (since g(z) = r;(z) is a continuous mapping)

conv {ry+z (y), Tt (2)} C oT,

2

a contradiction. O
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Lemma 2. Assume F' C R" is a closed subset of a d-convex surface S of dimen-
sion k, 0 < k < n. Then there exists a convex function H: R™ — R such that H
is differentiable at all points of R™ \ F and Sy, (H) = F.

PrOOF: By Theorem Z there is a convex function f: R" — R such that S C
Sik(f). We may assume that f is strictly convex and f* is finite everywhere since
otherwise we take f(z)+ ||z||? (there exists an affine functional p such that p < f
and since (p(z) + ||z||?)* is finite everywhere we have that (f(x) + ||=|?)* is finite
everywhere t00).

Therefore f* is differentiable everywhere. Let us denote

F*:={z eR":V(f*)(z) € F}.
Since the mapping V(f*) is continuous, F'* is closed. For z € R™ denote by
pe(2) = (z,2) + ay

the supporting affine functional to f* (it exists for all  since (f*)* = f is finite
everywhere). For € > 0 let us denote

Upe:={2 €R": f*(2) < pz(2) + €},

Tre:={z€R": f*(2) <pz(z) +¢}.
By the fact (5) applied to f*, the set T, . is compact and clearly it is convex.
The set U, ¢ is open.
Claim. For each x € R"\ F,

lim dist(Ty,e, F*) >0

E—>0+
holds.
PROOF OF CLAIM: Let us denote

Wy i={2€R": f*(2) =pz(2)} = ﬂ Trpe-
e>0

Clearly Wy N F* = (.5 o(Tz,e N F*) = (. Since Ty . N F* are compact, for some
g0 > 0 we have Ty o, N F* = (). Thus dist(Ty ¢y, F*) > 0 and consequently, since
g(e) = dist(Ty ¢, F'*) is a non-increasing function, our Claim is proved. O

By above Claim we can, for every 2 € R" \ F, fix 0 < £ < 1 such that

[dist(Ty e, , F)] > e
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We have
Rn \ F* = U U{E,Ez,
zER\F
since, for 2* € R™ \ F*, we have «* € W, C Uy for x = V f*(z*) ¢ F. Therefore
there exist points 21, 22,... € R™\ F such that

o0

R\ F* = | J Uz, cp, -

i=1

According to Lemma 1, choose for each i € N a convex function h;: Trien, = R
such that

hilory, ., =0,
h; is affine on no line segment in Uxi7gxi and h; > f* —pg, — g, Let us define

I’LZ'I Rn - Ra
ili — hi + Dz, + Ex; on Txi75xi7
— f* on Rn \ TZEi,f‘:zi .

Then f* < hy < f* + g,

Observation. If h is a convex function on R", h is a convex function on a
compact convex set T C R™ and h|gy = hlgr, h > h on T, then the function

>

on R"\T;

=h
=h on T

>

is convex.

PROOF OF OBSERVATION: For n = 1 it is elementary and the higher dimensional
case is an immediate consequence of the 1-dimensional one. O

By this Observation functions h; are convex. Set

ks

~ ey .
h::Z -

=1

[\]

Clearly h = f* on F*, and 0 < h — f* < 1. Hence h < +0o. Moreover h is affine
on no line segment in R™ \ F*. Now we shall prove that H := (h)* fulfills the
assertion of the lemma. The function H is finite everywhere since h > f* and

(f*)* is finite everywhere.
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Let ¢ € F. There exist affine independent y; € df(z), i = 1,...,n — k + 1.
By Fact (2) we have x € 0f*(y;) and so y; € F*, i =1,... n—k—l—l Thus
h(y;) = f*(y;) and consequently, since h > f*, we have z € dh(y;). Therefore
y; € OH(z), and so x € S,(H).
Let us suppose for a contradiction that H is not differentiable at a point = ¢ F.
Then there exist z1 # 22, 21,20 € OH(z). Thus = € dh(z1) N dh(z2). Further, h
is affine on no line segment in R™ \ F*, therefore 21, 20 € F'™.

For each i € N we have f* < h; < f* 4 ¢,, and

2
€g; < dist(z1, Ty, Exy )

Therefore 5
f*(2) = hi(2)| < ez; < |2 = 21| for z € Tyye,-

Since also f*(z) = h;(2) for z & Ti, ¢, , we have for all 2

G =R = Y 507 6) - ﬁxz))‘
i=1
<§:%ﬂﬂ—nW<Hz—nW

This easily implies dh(z1) = 8f*(21), a contradiction with = € dh(z1), df*(21) C
F.

Lemma 3. If 1 <k<n-—1land f;: R" - R,i=1,2,..., are convex functions,
each differentiable at all points of R™\ Si(f;), then there exists a convex function

f:R™ — R such that
H=U S#)
i=1

and f is differentiable at all points of R™ \ Sy (f).

PROOF: Let us denote B(0,r) := {z: ||z| < r}.
Choose ¢; > 0,i=1,2,..., such that

1 .
|le7,| S E on B(O,l),
1
¢; fi is Lipschitz with the constant 5 on B(0,1).
Set f := Y72 ¢ifi. Clearly Sg(f) 2 U2 Sk(fi). Let us suppose for a con-

tradiction f is not differentiable at some z € R™ and all f; are differentiable
at x.
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There exists v € R™ such that ||v|| = 1 and
d:=d* f(z)(v) +d f(z)(~v) >0,

where d* f(z)(v) := limy_, M

Find j € N such that 27771 < d and z € B(0, ). Since Zgzl c; fi is differen-
tiable at x,

+ < zj: Cifi) (z)(v) +d* < zj: Cifi) (z)(—v) = 0.

i=1 i=1

Further, > 72 Zitl ¢; [ is Lipschitz with the constant 55 on B(0,j+1), and therefore

d+( 3 cz-fi)u)(v)s%,

i=j+1
- 1
d+( > Cz’fi) (@)(-v) < 55 -
i=j+1
Thus we have d* f(z)(v) + d* f(x)(—v) < QL + 57 < d, a contradiction. O

PROOF OF THEOREM: Let P = [J2, F; C U;’il S;, where F; is closed, S; is a
d-convex surface of dimension k for all i € N. We have P = Uszl(FZ N .S;) and,
since S; are closed sets, we get by Lemma 2 functions f; ; differentiable at all
points of R™ \ (F; N S;) such that Si(f; ;) = F; NSj. By Lemma 3 we then get a
convex function f differentiable at all points of R™ \ P such that S,(f) = P. O

Corollary. Let F C R™",1 <k <n—1. Then F = Si(f) holds for some convex
function f on R™ iff F' is an Fy-subset of a countable union of §-convex surfaces
of dimension k.

PROOF: By our Theorem, for every Fiz-subset P of a countable union of d-convex
surfaces of dimension k, there exists a convex function f: R™ — R such that
Sk(f) =P.

Conversely, for a convex function f: R™ — R, according to Theorem Z, Si.(f)
can be covered by countably many d-convex surfaces of dimension k. And it is
known that Si(f) is an Fy-set. Since I do not know any reference to this simple
result, I shall sketch the proof. Let Sy ;(f) be the set of all points 2 such that
there exist ug, ..., u; € 0f(x) such that (u; —ug) - (uj —ug) =0, |lu; —ugl| = 1/j
for all 4,5 € {1,...,k}. Then we have Si(f) = U;Z; Sk,;(f) and S ;(f) are
closed sets. Thus we are done. ]
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