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A nice class extracted from Cp-theory

Vladimir V. Tkachuk

Abstract. We study systematically a class of spaces introduced by Sokolov and call them
Sokolov spaces. Their importance can be seen from the fact that every Corson compact
space is a Sokolov space. We show that every Sokolov space is collectionwise normal,
ω-stable and ω-monolithic. It is also established that any Sokolov compact space X is
Fréchet-Urysohn and the space Cp(X) is Lindelöf. We prove that any Sokolov space
with a Gδ-diagonal has a countable network and obtain some cardinality restrictions on
subsets of small pseudocharacter lying in Σ-products of cosmic spaces.
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0. Introduction

It is Gul’ko’s result [Gu1] that, for any Corson compact space X , the family R
of retractions in X is very rich and, in some sense, determines the topology of X .
Gul’ko proved, using the properties of R that, for any Corson compactX , the odd
iterated function spaces (with the topology of pointwise convergence) are Lindelöf
and the even ones are normal.
This result was strengthened by Sokolov [So1] who established that all iterated

function spaces of a Corson compact space are Lindelöf. His method of proof also
used functions from a space to itself. He did not require them to be retractions
but the family C(X,X) of continuous functions from X to itself must be also rich
enough to allow a general construction for generating dual properties.
Sokolov’s method could be resumed as follows: given a cardinal invariant ϕ

and an infinite cardinal κ, let P(ϕ, κ) be the class of spaces X such that, for any
sequence {Fn : n ∈ N}, where every Fn is a closed subset ofX

n, there exists a con-
tinuous map f : X → X such that ϕ(f(X)) ≤ κ and fn(Fn) ⊂ Fn for any n ∈ N.
Sokolov was mainly interested in the case when ϕ is either hereditary density or
hereditary Lindelöf degree of all finite powers. He established, in particular, that
if ϕ is finitely multiplicative and η is a dual for ϕ (i.e., ϕ(X) = η(Cp(X)) for any
Tychonoff space X) then X ∈ P(ϕ, κ) implies Cp(X) ∈ P(η, κ). He also proved
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that, under some general assumptions on X , if ϕ is the supremum of hereditary
densities of finite powers and X ∈ P(ϕ, ω) then Cp(X) is Lindelöf.
The paper [So1] contains quite a few excellent results; however, the class

P(nw, ω) is only mentioned briefly, always in the context that the results proved
for hereditary density and hereditary Lindelöf degree are also valid for the spaces
from P(nw, ω). In the paper [So2] Sokolov introduces a class S as follows: a space
X belongs to S if and only if X ∈ P(nw, ω) and t(Xn) ≤ ω, l(Xn) ≤ ω for any
n ∈ N. He proved that a space X belongs to S if and only if Cp(X) is in S and
constructed an example of a compact X ∈ S which is not Corson compact.
The purpose of this paper is to show that the class P(nw, ω) has so nice and

unexpected properties that it deserves its own name. So, we say that X is a
Sokolov space (or has the Sokolov property) if X belongs to P(nw, ω). The im-
portance of this property becomes evident after we observe that every Corson
compact space is Sokolov so, studying Sokolov compact spaces we actually obtain
new information about Corson compacta.
We prove that every Sokolov space is normal, ω-monolithic and ω-stable. It

follows from Sokolov’s results that X is a Sokolov space if and only if Cp(X) is a
Sokolov space. We also show that any Sokolov space with a Gδ-diagonal is cosmic
and establish that |X | ≤ (ψ(X))ω for any X which embeds as a closed subspace
in a Σ-product of cosmic spaces.

1. Notation and terminology

All spaces are assumed to be Tychonoff. If X is a space then τ(X) is its
topology and τ∗(X) = τ(X)\{∅}. A family N is a network of a space X if every
U ∈ τ(X) is a union of a subfamily of N . In other words, a network is like a
base, only its elements need not be open. The cardinal nw(X) = min{|N | : N is
a network of X} is called the network weight of X . The spaces with a countable
network weight are called cosmic. The tightness t(X) of a space X is the minimal
cardinal κ such that for any A ⊂ X and x ∈ A there is a set B ⊂ A such that
|B| ≤ κ and x ∈ B. The Lindelöf number l(X) of the space X is the minimal
cardinal κ such that any open cover of X has a subcover of cardinality ≤ κ.
The pseudocharacter ψ(X) is the smallest cardinal κ such that every x ∈ X is
the intersection of at most κ-many open subsets of X . The cardinal ext(X) =
sup{|D| : D is a closed discrete subset of X} is called the extent of the space X .
A space X is Lindelöf Σ if it is a continuous image of a space Y which can be

perfectly mapped onto a second countable space. If κ is a cardinal then a space
X is called κ-monolithic if nw(A) ≤ κ for any A ⊂ X with |A| ≤ κ; the space X
is κ-stable provided that, for any continuous image Y of the space X , if there is
a continuous bijection of Y onto a space of weight ≤ κ then nw(Y ) ≤ κ. A space
X has a Gδ-diagonal if the diagonal ∆ = {(x, x) : x ∈ X} of the space X is the
intersection of countably many open subsets of X × X . The diagonal of X is
small if, for any uncountable A ⊂ (X × X)\∆ there is an uncountable B ⊂ A
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such that B ∩∆ = ∅. A regular uncountable cardinal κ is a caliber of X if, for
any U ⊂ τ∗(X) with |U| = κ there is V ⊂ U such that |V| = κ and

⋂
V 6= ∅.

Given spaces X,Y and f : X → Y , the n-th power fn : Xn → Y n of the map
f is defined by fn((x1, . . . , xn)) = (f(x1), . . . , f(xn)) for any (x1, . . . , xn) ∈
Xn. A space X is Sokolov (or, has the Sokolov property) if, for any sequence
{Fn : n ∈ N} with Fn closed in X

n for every n ∈ N, there is a continuous
map f : X → X such that nw(f(X)) ≤ ω and fn(Fn) ⊂ Fn for any n ∈ N.
The iterated function spaces Cp,n(X) are defined as follows: Cp,0(X) = X and
Cp,n+1(X) = Cp(Cp,n(X)) for any n ∈ ω. If ϕ is a cardinal invariant then the
cardinal invariant ϕ∗ is defined by ϕ∗(X) = sup{ϕ(Xn) : n ∈ N} for any space
X . A map f : X → Y is called R-quotient if, for any g : Y → R, the continuity
of g ◦ f implies continuity of g. A space is metacompact if any open cover of X
has a point-finite open refinement.
We say that a space S is a Σ-product of spaces from a class C if there is a

family {Xt : t ∈ T } of spaces from C and a point a ∈ X =
∏
{Xt : t ∈ T } such

that S = {x ∈ X : the set {t ∈ T : x(t) 6= a(t)} is countable}. Compact subspaces
of Σ-products of real lines are called Corson compact .
The rest of our notation is standard and follows [En].

2. General facts about Sokolov spaces

We compile the known facts about Sokolov spaces in the following theorem.
The respective statements were either proved by Sokolov in [So1] and [So2] or can
be easily deduced from his results. Taking in consideration that the paper [So1]
is less accessible and the results are often not explicitly given in [So1] and [So2],
we will give “a proof” which will consist of some sketches and/or exact references
to the respective passages in Sokolov’s papers.

2.1 Theorem. (a) Every closed subset of a Sokolov space is a Sokolov space and
the countable power of a Sokolov spaces is a Sokolov space.
(b) If X is a Sokolov space and f : X → Y is an R-quotient map then Y is a
Sokolov space.
(c) Any closed subspace of a Σ-product of second countable spaces (and hence
any Corson compact space) is Sokolov.
(d) A space X is Sokolov if and only if Cp(X) is Sokolov. Thus, if X is Sokolov
then Cp,n(X) is also Sokolov for any n ∈ N.
(e) If a space X is Sokolov and t∗(X) ≤ ω then Cp,2n+1(X) is Lindelöf for any
n ∈ N.
(f) If a space X is Sokolov and l∗(X) ≤ ω then Cp,2n(X) is Lindelöf for any
n ∈ N.
(g) If a space X is Sokolov and l∗(X) · t∗(X) ≤ ω then Cp,n(X) is Lindelöf for
any n ∈ N.
(h) A space X is Sokolov if and only if, for any family {Fmn : m,n ∈ N} such
that Fmn is a closed subset of X

n for any n,m ∈ N, there is a continuous map
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f : X → X for which nw(f(X)) ≤ ω and fn(Fmn) ⊂ Fmn for any m,n ∈ N.
(i) A space with a unique non-isolated point is Sokolov iff it is Lindelöf.
(j) There is a scattered Sokolov compact space which is not Corson compact.

Proof: The statement of (h) is formulated in [So1, Remark 1]. The idea of the

proof is that we can situate every Xn as a face in some Xk for k > n in such
a way that every Xn occurs infinitely many times in this representation. Then
every Fmn will be a closed subset of the respective X

k so the Sokolov property
of X can be applied to find the promised map.
The assertion of (a) is an immediate consequence of (h). If we take ϕ = nw

in [So1, Theorem 3] then we can see that the Sokolov property of X implies the
Sokolov property of Cp(X). The same result shows that if Cp(X) is Sokolov
then so is Cp(Cp(X)) and hence X is also Sokolov being homeomorphic to a
closed subspace of Cp(Cp(X)). This proves (d). A verification of (d) can also
be extracted from the proof of [So2, Theorem 3.2] where Sokolov establishes the
same for a class S which, in our terminology, consists of Sokolov spaces whose all
finite powers are Lindelöf and have countable tightness.
To see that (b) holds observe that Cp(Y ) embeds in Cp(X) as a closed subspace

and apply (d) together with (a). The statement (c) can be obtained applying The-
orem 1 of [So1] and observing that a subspace of a Σ-product of second countable
spaces is separable if and only if it is second countable. Here, even a sketch of
a proof requires a considerable space so we refer the reader, apart from [So1], to
the papers [Gu1] and [Gu2] in which Gul’ko applies a technique of dealing with
retractions which, once understood, can be easily transformed into a proof of (c).
The assertions (e) and (f) can be obtained from Theorem 4 and Theorem 5 of

[So1] if we observe that their proofs, done for hereditary density and hereditary
Lindelöf number, can give the same, with no change at all, for network weight.
A little bit more difficult challenge is to analyze the proof of Theorem 3.2 of [So2]
and see that its method can also be used to prove (e) and (f). The statement of
(g) is an immediate consequence of (e) and (f) as well as of Theorem 3.2 of [So2].
The existence of the example mentioned in (j) follows from Proposition 4.2 and
Corollary 4.3 of [So2].
The equivalence in (i) can be proved observing that Corollary 3 of [So1], al-

though formulated for Lindelöf number and density, is actually true for network
weight. The proof need not be changed at all but let us give here a sketch anyway.
The only non-trivial part is to show that if a Lindelöf spaceX has a unique non-

isolated point a then X is Sokolov; let Y = X\{a}. For any A ⊂ Y let rA(x) = x
if x ∈ A and rA(x) = a if x /∈ A. It is straightforward that rA : X → A ∪ {a}
is a continuous retraction for any A ⊂ Y . It turns out that, for any sequence
{Fn : n ∈ N} such that Fn is a closed subset of X

n for each n ∈ N, there is a
countable set A ⊂ Y such that (rA)

n(Fn) ⊂ Fn for any n ∈ N. This, of course,
implies that X is Sokolov. The method of finding the promised set A actually
belongs to Gul’ko; it is described in detail on page 140 of the book [Ar1] in the
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proofs of Proposition IV.3.10 and Lemma IV.3.11. �

Theorem 2.1 shows that Sokolov spaces form a very nice class. Let us show
that it is even nicer than this.

2.2 Proposition. Every Sokolov space is collectionwise normal, ω-stable, ω-mo-
nolithic and has countable extent.

Proof: Let X be a Sokolov space; if F and G are disjoint closed subsets of
X then, by Theorem 2.1(h), there is a continuous map f : X → X such that
Y = f(X) is cosmic while F ′ = f(F ) ⊂ F and G′ = f(G) ⊂ G. Observe that

clY (F
′) ∩ clY (G

′) ⊂ F ′ ∩ G′ ⊂ F ∩ G = ∅; since the cosmic space Y is normal,
there is a continuous g : Y → R such that g(clY (F

′)) = 1 and g(clY (G
′)) = 0. It

is evident that h = g ◦ f is a continuous function on X which separates the sets
F and G. Therefore X is normal.
Now take an arbitrary countable set A ⊂ X . The space F = A is Sokolov by

Theorem 2.1(a) so we can apply Theorem 2.1(h) again to find a continuous map
r : F → F for which r(F ) is cosmic and r(a) = a for any a ∈ A. Since A is dense
in F , we have r(x) = x for any x ∈ F and hence F = r(F ) is cosmic which proves
that X is ω-monolithic.
To see that the spaceX is ω-stable it suffices to note that Cp(X) is ω-monolithic

by what we proved in the above paragraph and Theorem 2.1(d) so the space X
has to be ω-stable by [Ar1, Theorem II.6.8].
Assume that ext(X) > ω and fix a closed discrete uncountable set D ⊂ X . The

space D is Sokolov by Theorem 2.1(a); since D is also first countable, we conclude

that Cp(D) = R
D is Lindelöf (see Theorem 2.1(e)), which is a contradiction.

Finally observe that any normal space of countable extent is collectionwise normal
so X is collectionwise normal. �

2.3 Corollary. If X is a Sokolov space then Cp,n(X) is normal and has countable
extent for any n ∈ N.

2.4 Corollary. A metrizable space is Sokolov if and only if it is separable.

2.5 Corollary. If X is a separable Sokolov space then nw(X) ≤ ω.

2.6 Corollary. Any Sokolov pseudocompact space is countably compact.

2.7 Corollary. Any Sokolov metacompact space is Lindelöf.

Proof: If X is a Sokolov metacompact space then X is paracompact because
it is collectionwise normal (see Proposition 2.2 and [En, Theorem 5.3.3]). Since
ext(X) = ω, the space X has to be Lindelöf (it is an easy exercise to see that any
paracompact space of countable extent is Lindelöf). �

It is well known that any Lindelöf Σ-space with a Gδ-diagonal is cosmic (see
[Gr1, Theorem 4.15]). It turns out that, in this situation, Sokolov spaces behave
similarly.
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2.8 Theorem. If X is a Sokolov space with a Gδ-diagonal then nw(X) ≤ ω.

Proof: Let ∆ = {(x, x) : x ∈ X} be the diagonal of the space X . Fix a sequence
F = {Fn : n ∈ ω} of closed subsets of X × X such that

⋃
F = (X × X)\∆.

By Theorem 2.1(h), there is a continuous map f : X → X such that Y = f(X)
is cosmic and f2(Fn) ⊂ Fn for any n ∈ ω. The map f is injective for if we
are given distinct x, y ∈ X then z = (x, y) ∈ Fn for some n ∈ ω and therefore
f2(z) = (f(x), f(y)) ∈ Fn ⊂ (X ×X)\∆ which shows that f(x) 6= f(y).
Since every cosmic space has a weaker second countable topology, there is a

continuous bijection of X onto a second countable space. The space X being
stable by Proposition 2.2, we conclude that nw(X) = ω. �

The following two results show that spread restrictions have strong implications
in Sokolov spaces. Recall that the spread s(X) of a space X is the supremum of
cardinalities of discrete subspaces of X .

2.9 Corollary. If X is a Sokolov space and s(X ×X) ≤ ω then X is cosmic.

Proof: Recalling that the space X ×X is ω-monolithic by Proposition 2.2, we
can see that hl(X×X) ≤ ω (see [Ar2, Proposition 2]). In particular, (X ×X)\∆
is a Lindelöf space which implies that the diagonal ∆ is a Gδ-subset of X ×X .
Now, apply Theorem 2.8 to complete the proof. �

2.10 Corollary. If X is a Sokolov space and s(Cp(X)) ≤ ω then X is cosmic.

Proof: It suffices to notice that the inequality s(Cp(X)) ≤ ω implies s(X×X) ≤
ω (see [Ar1, Corollary II.5.18]) and apply Corollary 2.9. �

2.11 Corollary. If X ×X is a hereditarily Sokolov space then X is cosmic.

Proof: Any discrete Sokolov space is countable by Proposition 2.2 so s(X×X) ≤
ω and hence we can apply Corollary 2.9 to see that X is cosmic. �

2.12 Proposition. If X is a Sokolov Lindelöf Σ-space then t∗(X) = ω and hence
Cp,n(X) is Lindelöf for any n ∈ N.

Proof: We have ext(Cp(X)) = ω by Theorem 2.1(d) and Proposition 2.2. There-
fore Baturov’s theorem [Ba] is applicable to see that Cp(X) is Lindelöf and hence
t∗(X) = ω by Asanov’s theorem (see [Ar1, Theorem I.4.1]). Now apply Theo-
rem 2.1(g) to finish the proof. �

2.13 Corollary. If X is a Sokolov compact space then X is Fréchet-Urysohn,
ω-monolithic and Cp,n(X) is Lindelöf for any n ∈ N.

It is still an open problem whether a Lindelöf Σ-space with a small diagonal is
cosmic. Recall that a space X has a small diagonal if, for any D ⊂ (X ×X)\∆
such that |D| > ω there is an uncountable E ⊂ D such that E∩∆ = ∅. Gruenhage
proved in [Gr2] that, under CH, every Lindelöf Σ-space with a small diagonal is
cosmic. We will prove the same for Sokolov Lindelöf Σ-spaces in ZFC.
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2.14 Theorem. Assume that X is a Sokolov space with l∗(X) ·t∗(X) ≤ ω. Then

(a) if X has a small diagonal then X is cosmic;
(b) if ω1 is a caliber of X then X is cosmic.

Proof: (a) If X is not cosmic then it is not separable by Corollary 2.5 so there
is a left-separated subspace Y = {xα : α < ω1} ⊂ X (this means that Yα = {xβ :

β < α} is closed in Y for any α < ω1). Let F =
⋃
{Y α : α < ω1}; it follows

from t(X) = ω that F is closed in X ; the space X being ω-monolithic, we have
nw(F ) = ω1.

The small diagonal property is hereditary so F also has a small diagonal and
hence ω1 is a caliber of Cp(F ) (see [Tk1]). We have nw(Cp(F )) = nw(F ) = ω1
so there is a dense subset D = {fα : α < ω1} of the space Cp(F ). If Dα = {fβ :

β < α} for any α < ω1 then P =
⋃
{Dα : α < ω1} is closed in Cp(F ) because

t(Cp(F )) = ω. Since P ⊃ D is dense in Cp(F ), we have P = Cp(F ) which shows

that the family U = {Cp(F )\Dα : α < ω1} is point-countable.
The cardinal ω1 being a caliber of Cp(F ) the family U cannot be uncountable

so Dα = Cp(F ) for some α < ω1 which shows that Cp(F ) is a separable Sokolov
space. Applying Corollary 2.5 once more we conclude that nw(F ) = nw(Cp(F )) =
ω; this contradiction shows that (a) is proved.

To prove (b) suppose that ω1 is a caliber of X . Then Cp(X) has a small
diagonal (see [Tk1]) and hence nw(Cp(X)) = ω by (a). Therefore nw(X) =
nw(Cp(X)) = ω and (b) is also settled. �

2.15 Corollary. Suppose that X is a Sokolov Lindelöf Σ-space. If either X has
a small diagonal or ω1 is a caliber of X then X is cosmic.

2.16 Examples. (a) The space ω1 is Sokolov while ω1+1 is not in spite of being
a continuous image of ω1. Thus Sokolov property is not preserved by continuous
images.
(b) There are Sokolov spaces X and Y such that neither X × Y nor X ⊕ Y is
Sokolov.
(c) If X is compact and Cp(X) is Lindelöf Σ then X is Sokolov being a Corson
compact by a Gul’ko’s theorem [Gu2]. However, if X is not compact and Cp(X)
is Lindelöf Σ then X is not necessarily a Sokolov space.

Proof: (a) It is a folklore (and easy to prove) that ω1 embeds into a Σ-product of
real lines as a closed subspace; by Theorem 2.1(c), ω1 is a Sokolov space. On the
other hand, the space ω1+1 is not Sokolov since it is compact and has uncountable
tightness (see Proposition 2.13).

(b) On the set ω1+1 define a topology µ declaring all points of ω1 isolated and
let the family {{ω1} ∪ {β : α < β} : α < ω1} be a local base at the point ω1. In
other words, the space X = (ω1+1, µ) is the one-point lindelöfication of a discrete
space of cardinality ω1. The spaces X and Y = ω1 are what we are looking for.
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We have already seen that Y is Sokolov; it follows from Theorem 2.1(i) that
X is Sokolov as well. Consider the “diagonal” D = {(α, α) : α < ω1} ⊂ X × Y
of the space X × Y . The projection onto the first factor maps D injectively
onto the discrete space X\{ω1} so D is discrete. It is an easy exercise that D is
closed in X × Y so ext(X × Y ) > ω and hence X × Y is not a Sokolov space by
Proposition 2.2.
If X ⊕ Y is Sokolov then (X ⊕ Y )2 is also Sokolov by Theorem 2.1(a); since

X × Y embeds in (X ⊕ Y )2 as a closed subspace, we infer that X × Y is Sokolov
which is a contradiction.
(c) Reznichenko proved (see [Fa, Section 8.4]) that there exists a compact space

K such that Cp(K) is Lindelöf Σ while there is a point x ∈ K such that X =
K\{x} is pseudocompact and C-embedded in K. The space K being Fréchet–
Urysohn, X is not countably compact and hence not Sokolov (see Corollary 2.6).
Since X is C-embedded in K, the image of Cp(K) under the restriction map is
the whole space Cp(X). Therefore Cp(X) is a Lindelöf Σ-space. �

Theorem 2.1(c) shows that the class of Sokolov spaces contains the class of all
closed subsets of Σ-products of real lines. Therefore it is natural to deal with
subspaces of “nice” Σ-products if we want to prove something which we suspect
to be true for Sokolov spaces. This is the reason why the rest of our results is
intended to show that some facts which we could not prove for Sokolov spaces,
are true for subspaces of “nice” Σ-products. We first look at the situation with
small diagonals and caliber ω1.

2.17 Lemma. Suppose that Z is a subspace of a Σ-product H of cosmic spaces.
If κ is an infinite cardinal such that κ = κω and |Z| > κ then there is a point
y ∈ H and a subset P ⊂ Z such that |P | = κ+ and the set {y}∪P is homeomorphic
to the one-point compactification A(κ+) of a discrete space of cardinality κ+.

Proof: Suppose that we are given a family {Nt : t ∈ T } of cosmic spaces such
that, for some point a ∈ N =

∏
{Nt : t ∈ T }, our space H coincides with the

subspace Σ(N, a) = {x ∈ N : the set supp(x) = {t ∈ T : x(t) 6= a(t)} is countable}
of the product N . For any S ⊂ T the mapping pS : N → NS =

∏
t∈S Nt is the

natural projection of N onto its face NS .
Observe that it is impossible that the set E =

⋃
{supp(x) : x ∈ Z} have

cardinality at most κ because then Z can be embedded in Σ(NE , pE(a)) and
hence |Z| ≤ |Σ(NE , pE(a))| ≤ κω = κ which is a contradiction.
Thus |E| > κ and therefore we can choose a set Y = {yα : α < κ+} ⊂ Z

such that supp(yα) is not contained in
⋃
{supp(yβ) : β < α} for any α < κ+.

Since every supp(yα) is countable and µ
ω ≤ κω = κ < κ+ for any µ < κ+,

there exists a set A ⊂ κ+ such that |A| = κ+ and there is D ⊂ T for which
supp(yα) ∩ supp(yβ) = D for any distinct α, β ∈ A (see [Ju, Fact 0.6]). Observe

that supp(yα) 6= supp(yβ) for distinct α, β < κ+ so the family {supp(yα)\D : α ∈
A} is disjoint and consists of non-empty subsets of T .
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Since D is countable, the space ND is cosmic and hence |ND| ≤ c < κ+.
Therefore we can choose a set B ⊂ A and h ∈ ND such that |B| = κ+ and
pD(yα) = h for any α ∈ B. Let P = {yα : α ∈ B} and define a point y ∈ N by
y|D = h and y(t) = a(t) for any t ∈ T \D. It is evident that y ∈ H and {y} ∪ P
is homeomorphic to A(κ+). �

2.18 Proposition. Suppose thatX is a subspace of a Σ-product of second count-
able spaces.

(a) If ω1 is a caliber of X then X is second countable.
(b) If X has a small diagonal and ext(X) ≤ c (in particular, if X is closed in
the respective Σ-product) then |X | ≤ c.

Proof: Let H be a Σ-product of second countable spaces such that X ⊂ H .
It is a theorem of Shapirovsky [Sh, Corollary 11] that X has a point-countable
π-base B. If ω1 is a caliber of X then B is countable whence X is separable and
hence w(X) = ω. This proves (a).
Now, if |X | > c then we can apply Lemma 2.17 to find a set P ⊂ X such

that |P | = c
+ and there is a point y ∈ H for which {y} ∪ P is homeomorphic to

A(c+). If y /∈ X then P is a closed discrete subset of X of cardinality c
+ which

contradicts ext(X) ≤ c. Therefore y ∈ X ; the property of having a small diagonal
is hereditary so the space {y} ∪ P ⊂ X has a small diagonal which is, evidently,
false. Therefore |X | ≤ c, i.e., we proved (b). �

The rest of our results deal with cardinality restrictions on subspaces of small
pseudocharacter of “nice” Σ-products. The motivation here is to extend the fa-
mous theorem of Arhangel’skii’s which says, in particular, that |X | ≤ c whenever
X is a compact space of countable (pseudo)character. An easy consequence of
the theorem of Arhangel’skii is that |X | ≤ c if X is a Lindelöf Σ-space of count-
able pseudocharacter because any such space is a union of ≤ c-many of compact
subspaces. Now, if we assume that ψ(X) ≤ ω and Cp(X) is a Lindelöf Σ-space
then it is not clear at all whether |X | ≤ c even though, for such a space X , the
space υX is Lindelöf Σ as well as Cp(υX) (see [Ar1, Theorem IV.9.5] and [Tk2,
Theorem 2.3]).
The author also believes (without being able to prove it) that countable pseu-

docharacter of a Sokolov space implies that its cardinality does not exceed c so
we prove analogous results for subspaces of “nice” Σ-products.

2.19 Theorem. If X is an arbitrary subspace of a Σ-product of cosmic spaces
then |X | ≤ (ext(X) · ψ(X))ω.

Proof: Let H be a Σ-product of cosmic spaces such that X ⊂ H . Consider the
cardinal κ = (ext(X) · ψ(X))ω and assume that |X | > κ. Since κω = κ, we can
apply Lemma 2.17 to find a set P ⊂ X such that |P | = κ+ and there is a point
y ∈ H for which {y} ∪ P is homeomorphic to A(κ+). If y /∈ X then P is a closed
discrete subset of X of cardinality κ+ which contradicts ext(X) ≤ κ. Therefore
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y ∈ X which shows that ψ(X) ≥ ψ({y} ∪ P ) = κ+ which is a contradiction with
ψ(X) ≤ κ. �

2.20 Corollary. For any closed subspace X of a Σ-product of cosmic spaces we
have |X | ≤ (ψ(X))ω .

Proof: It is not difficult to show that ext(X) = ω so Theorem 2.19 completes
the job. �

2.21 Corollary. If X is homeomorphic to a closed subspace of a Σ-product of
real lines and pseudocharacter of X is countable then |X | ≤ c.

3. Open problems

The following list of open questions contains the most interesting problems
the author could not solve while working on this paper. As usual, the unsolved
problems are more numerous than the solved ones; this shows, in particular, that
the class of Sokolov spaces still offers quite a few challenges to a researcher.

3.1 Problem. Is any hereditarily Sokolov space cosmic?

3.2 Problem. Suppose that (X ×X)\∆ is a Sokolov space. Must X be cosmic?
Here ∆ = {(x, x) : x ∈ X} is the diagonal of the space X .

3.3 Problem. Suppose that X is a Sokolov space and ω1 is a caliber of X . Must
X be cosmic?

3.4 Problem. Suppose that X is a Sokolov space with a small diagonal. Must
X be cosmic?

3.5 Problem. Let X be a Sokolov space with ψ(X) = ω (or even χ(X) = ω). Is
it true that |X | ≤ c?

3.6 Problem. Is every Sokolov space monolithic? (This is the same as asking
whether every Sokolov space is stable.)

3.7 Problem. Suppose that X is a Sokolov compact space. Is it true that there
exists an injective continuous map of Cp(X) into a Σ-product of real lines?

3.8 Problem. Suppose that X and Cp(X) are Lindelöf Σ-spaces. Must X be a
Sokolov space? The answer is not clear even if X is σ-compact.

3.9 Problem. Must every Sokolov realcompact space be Lindelöf?

3.10 Problem. Suppose that X is a Sokolov Lindelöf space. Is it true that Xn

is Lindelöf for any n ∈ N?

3.11 Problem. Suppose that X is a Sokolov space with t(X) = ω. Is it true
that t(Xn) = ω for any n ∈ N?



A nice class extracted from Cp-theory 513

3.12 Problem. Is any Lindelöf P -space Sokolov?

3.13 Problem. Suppose that X is a Lindelöf P -space and K is a compact sub-
space of Cp(X). Must K be a Sokolov space?

3.14 Problem. Suppose that X is a Sokolov compact space and p(Cp(X)) = ω
(this means that every point-finite family of non-empty open subsets of Cp(X) is
countable). Must X be metrizable?

3.15 Problem. Is it true that any Sokolov space has a point-countable π-base?

3.16 Problem. Suppose that Cp(X) is a Lindelöf Σ-space and ψ(X) = ω (or
even χ(X) = ω). It is true that |X | ≤ c?
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[So1] Sokolov G.A., On Lindelöf spaces of continuous functions (in Russian), Matem. Zametki

39:6 (1986), 887–894.
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