G_{δ} -modification of compacta and cardinal invariants

A.V. ARHANGEL'SKII

Abstract. Given a space X, its G_{δ} -subsets form a basis of a new space X_{ω} , called the G_{δ} -modification of X. We study how the assumption that the G_{δ} -modification X_{ω} is homogeneous influences properties of X. If X is first countable, then X_{ω} is discrete and, hence, homogeneous. Thus, X_{ω} is much more often homogeneous than X itself. We prove that if X is a compact Hausdorff space of countable tightness such that the G_{δ} -modification of X is homogeneous, then the weight w(X) of X does not exceed 2^{ω} (Theorem 1). We also establish that if a compact Hausdorff space of countable tightness is covered by a family of G_{δ} -subspaces of the weight $\leq c = 2^{\omega}$, then the weight of X is not greater than 2^{ω} (Theorem 4). Several other related results are obtained, a few new open questions are formulated. Fedorchuk's hereditarily separable compactum of the cardinality greater than $c = 2^{\omega}$ is shown to be G_{δ} -homogeneous under CH. Of course, it is not homogeneous when given its own topology.

Keywords: weight, tightness, $G_{\delta}\text{-modification},$ character, Lindelöf degree, homogeneous space

Classification: 54A25, 54B10

Let \mathcal{T} be a topology on a set X. Then the family of all G_{δ} -subsets of X is a base of a new topology on X, denoted by \mathcal{T}_{ω} and called the G_{δ} -modification of \mathcal{T} . The space $(X, \mathcal{T}_{\omega})$ is also denoted by X_{ω} and is called the G_{δ} -modification of the space (X, \mathcal{T}) . Clearly, the G_{δ} -modification X_{ω} of any topological space is a P-space, that is, every G_{δ} -subset of X_{ω} is open in X_{ω} .

In general, the space $(X, \mathcal{T}_{\omega})$ is very different from the space (X, \mathcal{T}) . Many properties of (X, \mathcal{T}) , such as compactness, Lindelöfness, paracompactness are easily lost under G_{δ} -modifications. On the other hand, properties of the space can greatly improve under the operation of G_{δ} -modification. For example, if (X, \mathcal{T}) is first countable, then the space $(X, \mathcal{T}_{\omega})$ is discrete. Thus, no matter which first countable space (X, \mathcal{T}) we take, the resulting space $(X, \mathcal{T}_{\omega})$ will be metrizable, zero-dimensional, Čech-complete and homogeneous! We see that the difference in properties between the spaces (X, \mathcal{T}) and $(X, \mathcal{T}_{\omega})$ can indeed be tremendous!

Some interesting facts on G_{δ} -modifications and on *P*-spaces were established in [12], where also a survey of what is known in this direction is given. See also [11].

Research partially supported by National Science Foundation grant DMS-0506063.

A.V. Arhangel'skii

It is our goal in this article to show that homogeneity of G_{δ} -modification has a deep influence on the structure of the space itself and on the relationship between its cardinal invariants. Our main result in this direction (Theorem 1 below) is inspired by R. de la Vega's recent result that the weight of any homogeneous compact Hausdorff space of countable tightness is $\leq 2^{\omega}$. We generalize de la Vega's theorem as follows:

Theorem 1. Let X be a compact Hausdorff space of countable tightness such that the G_{δ} -modification X_{ω} of X is homogeneous. Then the weight w(X) of X, as well as the weight of X_{ω} , is not greater than 2^{ω} .

PROOF: We claim that there is a non-empty open subspace U of X_{ω} such that $w(U) \leq 2^{\omega}$. Indeed, since X is a non-empty compact Hausdorff space of countable tightness, there exists a non-empty G_{δ} -subset U of X such that the weight of the subspace U of X is not greater than 2^{ω} ([2], [1]). Then U is an open subspace of X_{ω} and the weight of the subspace U of X_{ω} is also not greater than 2^{ω} . Since X_{ω} is homogeneous, it follows that every point in X_{ω} has an open neighbourhood Ox in X_{ω} such that $w(Ox) \leq 2^{\omega}$.

According to a result of E.G. Pytkeev [14], the Lindelöf degree of the G_{δ} modification of any compact Hausdorff space of countable tightness does not exceed 2^{ω} (see Theorem 4 in [14]). Therefore, $l(X_{\omega}) \leq 2^{\omega}$. Since the local weight of X_{ω} does not exceed 2^{ω} , it follows that there exists an open covering γ of X_{ω} such that $w(U) \leq 2^{\omega}$, for each $U \in \gamma$, and $|\gamma| \leq 2^{\omega}$. Fixing a base of cardinality $\leq 2^{\omega}$ in each $U \in \gamma$, and taking the union of these bases, we obtain a base of cardinality $\leq 2^{\omega}$ in X_{ω} . Thus, $w(X_{\omega}) \leq 2^{\omega}$. Since, X is a continuous image of X_{ω} , we have $nw(X) \leq w(X_{\omega}) \leq 2^{\omega}$. However, since X is compact, $w(X) = nw(X) \leq 2^{\omega}$ ([9]).

This theorem immediately implies that the cardinality of every first countable compact Hausdorff space does not exceed 2^{ω} [Arh2]. Indeed, the tightness of first countable spaces is countable, and, obviously, if the weight of a first countable Hausdorff space is $\leq 2^{\omega}$, then the cardinality of X is also not greater than 2^{ω} . Theorem 1 also implies de la Vega's result that the weight of any homogeneous compact Hausdorff space of countable tightness is $\leq 2^{\omega}$, since the G_{δ} -modification of a homogeneous space is homogeneous.

A space Y is *power-homogeneous* if Y^{τ} is homogeneous, for some $\tau > 0$ (see [4]). Weakening one of the assumptions in Theorem 1, we arrive at a weaker conclusion:

Theorem 2. Let X be a compact Hausdorff space of countable tightness such that the G_{δ} -modification of X is power-homogeneous. Then the character of X is not greater than 2^{ω} .

PROOF: Take any non-empty G_{δ} -subset Y of X. There exists a non-empty G_{δ} subset U of Y such that the weight of the subspace U of the space X is not greater than 2^{ω} ([2], [1]). Then U is an open subspace of X_{ω} and the weight of the subspace U of X_{ω} is also not greater than 2^{ω} . It follows that the set Z of all $x \in X$ such that the character of x in X_{ω} is not greater than 2^{ω} is dense in the space X_{ω} . Since X_{ω} is power-homogeneous and $Z \neq \emptyset$, it follows from Theorem 7 in [4] that the set M of all G_c -points in X_{ω} is closed. Obviously, $Z \subset M$. Therefore, M = X; thus, each $x \in X$ is a G_c -point in X_{ω} .

Fix an arbitrary $a \in X$. According to Pytkeev's theorem (see the proof of Theorem 1), the Lindelöf degree of X_{ω} is not greater than $c = 2^{\omega}$. Put $A = X \setminus \{a\}$. Since a is a G_c -point in X_{ω} , it follows that $l(A) \leq 2^{\omega}$, where A is considered as a subspace of X_{ω} . Since the identity mapping of X_{ω} onto X is continuous, we conclude that the Lindelöf degree of A, considered as a subspace of X, does not exceed 2^{ω} as well. This implies that a is a G_c -point in X. Since X is compact and Hausdorff, it follows that the character of X at a is not greater than 2^{ω} ([9]).

Theorem 3. Let X be a sequential Hausdorff compact space such that the G_{δ} -modification of X is power-homogeneous. Then $|X| \leq 2^{\omega}$.

PROOF: It follows from Theorem 2 that $\chi(X) \leq 2^{\omega}$. However, the cardinality of every sequential Hausdorff compact space such that $\chi(X) \leq 2^{\omega}$ does not exceed 2^{ω} (see [2]).

The last result generalizes Corollary 3.8 in [5] and an earlier result on the cardinality of homogeneous compact sequential spaces in [2].

The technique of G_{δ} -modification can be used to obtain some addition theorems for the weight that do not involve the assumption of homogeneity. In particular, we have:

Theorem 4. Let X be a compact Hausdorff space of countable tightness, and suppose that X is covered by a family γ of G_{δ} -subsets such that the weight of P is not greater than 2^{ω} , for each $P \in \gamma$. Then the weight of X is not greater than 2^{ω} .

PROOF: The proof is close to the proof of Theorem 1. Consider the G_{δ} -modification X_{ω} of X. The family γ is an open covering of X_{ω} , and the weight of each $P \in \gamma$, interpreted as a subspace of X_{ω} , is not greater than 2^{ω} . By Pytkeev's theorem (see the proof of Theorem 1), the Lindelöf degree of X_{ω} is not greater than $c = 2^{\omega}$. Therefore, the weight of X_{ω} is not greater than 2^{ω} (to get an appropriate base of X_{ω} , just take the union of the bases of cardinality $\leq 2^{\omega}$ of elements of γ). Since X is a continuous image of X_{ω} , we have $nw(X) \leq w(X_{\omega}) \leq 2^{\omega}$. However, X is compact. Hence, $w(X) = nw(X) \leq 2^{\omega}$.

For some results related to Theorem 4 see [15] and [6].

The assumption of countable tightness in the last statement can be replaced by some other conditions. **Theorem 5.** Let X be a scattered compact Hausdorff space covered by a family γ of G_{δ} -subsets such that the weight of P is not greater than 2^{ω} , for each $P \in \gamma$. Then the weight of X does not exceed 2^{ω} .

PROOF: The Lindelöf degree of the G_{δ} -modification X_{ω} of the space X does not exceed ω ([13]). Since γ is an open covering of X_{ω} , we can assume that γ is countable. It follows that $w(X_{\omega}) \leq 2^{\omega}$, which implies that $nw(X) \leq w(X_{\omega}) \leq 2^{\omega}$. Finally, since X is compact, we have $w(X) = nw(X) \leq 2^{\omega}$.

The proof of the next result should be clear by now:

Theorem 6. Let X be a scattered space. Then the G_{δ} -modification X_{ω} of X is power-homogeneous if and only if the pseudocharacter of X is countable (that is, if and only if the G_{δ} -modification of X is discrete).

Problem 7. Suppose that X is a compact Hausdorff space covered by a family γ of G_{δ} -subsets P such that the weight of P is not greater than 2^{ω} , for each $P \in \gamma$. Is the weight of X not greater than 2^{ω} ?

Problem 8 (Arhangel'skii, Buzyakova). Let X be a compact Hausdorff space of countable tightness such that the character of X does not exceed 2^{ω} . Is the weight of X not greater than 2^{ω} ?

Consistently the answer to the last question is "yes". Indeed, it was shown in [7] to be consistent with ZFC to assume that every compact Hausdorff space of countable tightness is sequential. It remains to apply the following result from [2]: the cardinality of every sequential Hausdorff compact space such that $\chi(X) \leq 2^{\omega}$ does not exceed 2^{ω} .

Closely related to Problem 8 is the following question: Let X be a compact Hausdorff space of countable tightness such that the G_{δ} -modification of X is homogeneous. Is $|X| \leq 2^{\omega}$? The answer to this question is independent of ZFC. Under Proper Forcing Axiom (PFA) (for the discussion of (PFA) see [8]) the answer is "yes". In fact, we can prove a stronger statement:

Theorem 9. Assume (PFA), and let X be a Hausdorff compact space of countable tightness such that the G_{δ} -modification of X is power-homogeneous. Then X is first countable (and hence, $|X| \leq 2^{\omega}$ and $w(X) \leq 2^{\omega}$).

PROOF: A. Dow has shown in [Dow] that under (PFA) every non-empty compact Hausdorff space of countable tightness has a point of first countability. It follows easily from this result that, under (PFA), the set of isolated points is dense in the G_{δ} -modification X_{ω} of the compactum X.

Since X_{ω} is power-homogeneous, it follows from Theorem 7 in [4] that the set M of all G_{δ} -points in X_{ω} is closed. Therefore, M = X, that is, each $x \in X$ is a G_{δ} -point in X_{ω} . Since X_{ω} is a P-space, we conclude that the space X_{ω} is discrete. Hence, the pseudocharacter of the space X is countable. Since X is compact and Hausdorff, it follows that X is first countable.

On the other hand, we have the following result:

Theorem 10 (CH). Let X be a hereditarily separable compact Hausdorff space without points of first countability. Then the G_{δ} -modification of X is homogeneous.

This theorem will follow from a more general result below. Notice that Fedorchuk has constructed [10] a consistent example of a hereditarily separable, nowhere first countable, compact Hausdorff space X such that the cardinality of X is greater than 2^{ω} . In the model of Set-theory he considered (CH) was also satisfied.

Theorem 11 (CH). Let X be a compact Hausdorff space of the weight ω_1 such that the character of X at each point is exactly ω_1 . Then the G_{δ} -modification X_{ω} of X is homeomorphic to the G_{δ} -modification of the compactum D^{ω_1} .

Fix a set A of the cardinality $\omega_1 = c = 2^{\omega}$, give A the discrete topology, and let B be the G_{δ} -modification of the product space A^{ω_1} .

Claim 1: The G_{δ} -modification of D^{ω_1} is homeomorphic to the space B. This is obvious.

By Claim 1, it is enough to prove that X_{ω} is homeomorphic to *B*. For that, we need the following lemma:

Lemma 12. Let X be a non-scattered compact Hausdorff space. Then there exists a disjoint covering γ of X by non-empty closed G_{δ} -sets such that $|\gamma| = 2^{\omega}$.

PROOF: Since X is not scattered, there exists a continuous mapping f of X onto the closed interval I = [0, 1] (see [9]). Then $\gamma = \{f^{-1}(y) : 0 \le y \le 1\}$ is, clearly, the covering we are looking for.

Below we will need the following slightly stronger version of Lemma 12:

Lemma 13. Let X be a non-scattered compact Hausdorff space and F_0 be a closed G_{δ} -subset of X. Then there exists a disjoint covering γ_1 of X by non-empty closed G_{δ} -sets such that $|\gamma_1| = 2^{\omega}$ and $F_0 = \bigcup \eta$, for some subfamily η of γ_1 .

PROOF: We can fix a continuous real-valued function g on X such that $g^{-1}(0) = F_0$, since X is normal. Take also a disjoint covering γ of X by closed G_{δ} -subsets such that $|\gamma| = 2^{\omega}$ (this is possible by Lemma 12). Now let γ_1 be the family $\{g^{-1}(a) \cap P : a \in \mathbb{R}, P \in \gamma\} \setminus \{\emptyset\}$, where \mathbb{R} is the set of reals. Obviously, γ_1 is the covering we are looking for.

PROOF OF THEOREM 11: A standard construction by transfinite recursion along ω_1 , using (CH) and Lemmas 12 and 13, provides us with a transfinite sequence $\{\gamma_{\alpha} : \alpha < \omega_1\}$ of disjoint coverings of X by closed non-empty G_{δ} -subsets of X such that the following conditions are satisfied:

1) γ_{β} refines γ_{α} , whenever $\alpha < \beta < \omega_1$;

- 2) for each $P \in \gamma_{\alpha}$, the cardinality of the family $\eta_P = \{F \in \gamma_{\alpha+1} : F \subset P\}$ is ω_1 ;
- 3) the family $S = \bigcup \{ \gamma_{\alpha} : \alpha < \omega_1 \}$ is a network of the space X.

Observe that compactness of X and the above conditions ensure that the following condition is satisfied:

4) for every uncountable centered family ξ of elements of S, the intersection of ξ consists of exactly one point x_{ξ} , ξ is a network of X at x, and ξ is a base of the G_{δ} -modification X_{ω} at x.

Note, that elements of S are open-closed subsets of X_{ω} , and that if $\xi \subset S$ is countable, then either $\bigcap \xi = \emptyset$ or the cardinality of $\bigcap \xi$ is $c = \omega_1$.

The above properties of the family $\{\gamma_{\alpha} : \alpha < \omega_1\}$ allow to establish a homeomorphism between the space X_{ω} and the space B in an obvious routine way. \Box

Corollary 14 (CH). Let X be a compact Hausdorff space of the weight ω_1 such that the character of X at each point is exactly ω_1 . Then the G_{δ} -modification X_{ω} of X is homogeneous. Furthermore, X_{ω} is homeomorphic to a topological group.

PROOF: Indeed, by Theorem 11 X_{ω} is homeomorphic to the G_{δ} -modification B of the compactum D^{ω_1} . However, the space B is homogeneous, since D^{ω_1} is homogeneous. Hence, X_{ω} is homogeneous as well. In fact, B is homeomorphic to a topological group, since D^{ω_1} is a topological group.

Problem 15. Can (CH) be dropped in the above statement?

The following long standing problems posed in [3], [1], [2] remain open:

Problem 16. Is it true in ZFC that every homogeneous compact sequential space is first countable?

Problem 17. Is it true in ZFC that every homogeneous compact space of countable tightness is first countable?

Acknowledgment. I am grateful to Professor Raushan Z. Buzyakova for several very helpful remarks on the subject of this paper.

References

- Arhangel'skii A.V., On cardinal invariants, In: General Topology and its Relations to Modern Analysis and Algebra 3. Proceedings of the Third Prague Topological Symposium, 1971, 37–46. Academia Publishing House, Czechoslovak Academy of Sciences, Prague, 1972.
- [2] Arhangel'skii A.V., Structure and classification of topological spaces and cardinal invariants, Russian Math. Surveys 33 (1978), 33–96.
- [3] Arhangel'skii A.V., Topological homogeneity, topological groups and their continuous images, Russian Math. Surveys 42 (1987), 83–131.
- [4] Arhangel'skii A.V., Homogeneity of powers of spaces and the character, Proc. Amer. Math. Soc. 133 (2005), 2165-2172.

- [5] Arhangel'skii A.V., A weak algebraic structure on topological spaces and cardinal invariants, Topology Proc. 28 (2004), no. 1, 1–18.
- [6] Arhangel'skii A.V., van Mill J., Ridderbos G.J., A new bound on the cardinality of power homogeneous compacta, Houston J. Math., to appear.
- Balogh Z., On compact Hausdorff spaces of countable tightness, Proc. Amer. Math. Soc. 105 (1989), 755–764.
- [8] Dow A., An introduction to applications of elementary submodels to topology, Topology Proc. 13 (1988), 17–72.
- [9] Engelking R., General Topology, PWN, Warszawa, 1977.
- [10] Fedorchuk V., On the cardinality of hereditarily separable compact Hausdorff spaces, Soviet Math. Dokl. 16 (1975), 651–655.
- [11] Kunen K., Box products of compact spaces, Trans. Amer. Math. Soc. 240 (1978), 307–316.
- [12] Levy R., Rice M.D., Normal P-spaces and the G_{δ} -topology Colloq. Math. 44 (1981), 227–240.
- [13] Meyer P.R., The Baire order problem for compact spaces, Duke Math. J. 33 (1966), 33–40.
- [14] Pytkeev E.G., About the G_λ-topology and the power of some families of subsets on compacta, Colloq. Math. Soc. Janos Bolyai, 41. Topology and Applications, Eger (Hungary), 1983, pp. 517–522.
- [15] de la Vega R., A new bound on the cardinality of homogeneous compacta, Topology Appl., to appear.

Department of Mathematics, Ohio University, Athens, Ohio 45701, USA

E-mail: arhangel@math.ohiou.edu

(*Received* September 13, 2005)