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Two weight norm inequalities for fractional
one-sided maximal and integral operators

LILIANA DE ROSA

Abstract. In this paper, we give a generalization of Fefferman-Stein inequality for the
fractional one-sided maximal operator:

+o0 too
/7 M (f)(@)Pw(z)dz < Ap [ |f ()P Mg (w) () da,

where 0 < @ < 1 and 1 < p < 1/a. We also obtain a substitute of dual theorem and
weighted norm inequalities for the one-sided fractional integral I, .
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1. Introduction

For each 0 < a < 1 and f locally integrable on the real line R the fractional
one-sided maximal operators are defined by

1 z+h _ 1 T
ME)) = s [ 1wy snd 215 (1)) = s 5 [ i)l

In the case a = 0 we have MJ‘ =M™ and My = M~ the one-sided maximal
Hardy-Littlewood operators.
The fractional one-sided integral operators are defined by

—+o0 x
e = [ IOy and 17 (f)(@) = / _J@) g,

x (y— x)l—a B y)l_a

For each = in R we consider the family of intervals A; = {I = [a,b) : I is dyadic
and 0 < a —x < b—a}. For each locally integrable function f and 0 < o < 1, its
one-sided dyadic fractional maximal operator is given by

Mg o)) =sww { s [l e AL
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Similarly, M_ ,,(f) was introduced.

By Proposition 2.5 in [7] for each 0 < a < 1, there exist two constants P, and
Qo such that

(1.1) Qa M7 () (@) < MF (f)(@) < Pa M7 p(f)(@).

Let X be a Banach function space on R. We recall that generalized Holder
inequality

(1.2) /le(y)g(y)l du(y) < [IflIxllgllx-

holds, where X' is the associated space.
The X-average of a measurable function f over a bounded interval I is given
by
£l x,r = 116, (fx0)ll x5

where 5 is the dilation operator dsf(z) = f(sx), s > 0.
As a consequence of (1.2) we have that for every interval I the inequality

(1.3) ﬁ /I F@)e@)l dut) < I flx.rllglxs

holds. The one-sided maximal Hardy-Littlewood operators associated to X were
defined by

M f(x) :igp”f”X,(x,b) and My f(z) :igngHX,(a,x)'

We refer the reader to [1] for a complete study of Banach function spaces.

Given an interval I = [a,b) we will denote by I~ the interval [a — (b — a), a).
If p > 1 its conjugate exponent will be denoted by p’.

A weight w is a non negative and locally integrable function defined on R.

The following theorem gives us a weak type boundedness for the one-sided
dyadic fractional maximal operator M; p With respect to a pair of weights. It
will be proved in Section 2.

Theorem 1.1. Let 1 < p < oo and 0 < a < 1. Let X be a Banach function
space satisfying the following property: there exists a constant C > 0 such that
for every dyadic interval J = [b,c) and each y € J~ the inequality

(1.4) 1flx,0 < Cllfllx,(y,e)
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holds, and the operator M;g : LP(R) — LP(R) is bounded, that is, there exists
a constant C, such that for every f

1M (F)llp < Cpll £llp-

Suppose that the pair of weights (w,v) satisfies the condition

« 1 — 1/p -1
(15 1 | )| e < K
for every dyadic interval J.
Then, if for every t > 0 we denote

By = {os M p()(@) > 1}
we have that,

’LUp(Et) <

PO C o0
2RTCC / F )Py dy.

tP — oo
In this paper, every theorem has a corresponding one reversing the orientation
of the real line.

For each 0 < oo < n, we consider the maximal operator

1

Ma(Pa) = sup i [ 1£0)ldy
: 2eQ Q11" Jq

where the supremum is taken over all cubes @ in R™ with edges parallel to the

coordinate axes and |@| denotes its Lebesgue measure. The inequality

. Ma(f)(@)Pw(x) do < Ap/R |f (@) [P Map(w)(z) dz,

where 1 < p < n/a and w is any weight, for a = 0 was obtained by C. Fefferman
and E.M. Stein in [3] and for 0 < o < 1 was proved by D. Cruz-Uribe, in Theo-
rem 1.7 of [2]. We study the one-sided problem and give a proof of the following
result in Section 2.

Theorem 1.2. Let 0 < a <1 and1 < p < 1/a. There exists a constant Ap such
that for every weight w the inequality

+oo +oo

M (f)(@)Pw(z)de < Ap/ | (@) [P My, (w)() d
—c0 —00
holds, for every measurable function f and every weight w.

The one-sided fractional maximal operator M is not a linear operator. As a
dual version of Theorem 1.2 we will prove the following result in Section 3.
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Theorem 1.3. Let 1 <p < oo and 0 < a < 1/p’. There exists a constant C' > 0
such that the inequality

+o0 , +oo
ME ()@ (M, (MPhw)(2)]' 7P do < C/_ |/ @)P w(x)! P da

—o
holds, for every measurable function f and every weight w where M Pl js the
maximal Hardy-Littlewood operator iterated [p'] times.

For the one-sided fractional integral operator I we have the following weighted
norm inequality which will be proved in Section 3.

Theorem 1.4. Let 1 <p < oo and 0 < a < 1/p’. There exists a constant C' > 0
such that the inequality

+00 , +oo
| m@p prg 0@l <o [ @ we i

— 0o — 0o
holds, for every measurable function f and every weight w where M V'] is the
maximal Hardy-Littlewood operator iterated [p'] times.
Throughout this paper, the letters A, B and C will denote positive constants,
not necessarily the same at each occurrence.

2. Proofs of Theorem 1.1 and Theorem 1.2

The following proposition is a fractional version of Calderon-Zygmund decom-
position. It will be applied in the proof of Theorem 1.1.

Proposition 2.1. Let f belong to L'(R), 0 < o < 1 and t > 0. There exists a
countable family {J}>1 of dyadic disjoint intervals such that for every k > 1

1 / 1—
| Tl g,
Moreover,
Ey={z: MI,(f)(z) >t} =Q UA,

where

QO =JJ; and A=[]A4,
k>1 k>1

with A, = (E¢\Q27) N Jp, and for each x in Aj, there exists a dyadic interval I;
satisfying

1
I-UI; CJp, zel, and t<7/ fl.
J J J |[ﬂ1—a Q| |
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PRrROOF: Let D = {I = [a,b) : I is dyadic}. Given an interval I in D such that

1
(2.1) t<|j|ﬂ/l|f|

1< (1)
t )

hence, the measure |I| is finite and there exist maximal dyadic intervals satisfying
(2.1). Let

we have that

1
Cy =< J €D:Jis maximal with the property ¢t < T/ If] ¢ -
[T )y

Let J belong to C;. There exists an interval H € D such that J C H and |H| =
2|J|. Taking into account that J is maximal with respect to the property (2.1)
then H ¢ Cy and,

21—05

1 -
t< —5— < — <277
e [, 101 s 1<

Since the family of dyadic intervals D is countable we can denote Ct = {Jj };>1-
By the definition of M;,D we have that Q~ U A C E}.
We shall prove that

E,CQ UA

where

Q" = U J, and A= U A with A = (EB\Q7) N Jg.
k>1 k>1

Suppose that € Fy and x ¢ Q~. We shall prove that « € Ay, for some k > 1.
Since x € Ey, there exists an interval I € D such that

1
zel™ and t<—/
e ;!

and the definition of C} implies that I C J for some k& > 1.
It must be I # Jj, because if I = J;, then x € J and x ¢ Q™. Thus, I # J;,

which implies that I~ C J,~ or I~ C Ji. Necessarily I~ C Ji, because in the
other case z € J,_ and x ¢ Q7, a contradiction. In consequence, I~ U C Jj.
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Since the family of dyadic intervals is countable, there exists a sequence {1} ;>1
of disjoint dyadic intervals satisfying

1

Ak:UI‘_7 Ij_UIngk and t<ﬁ/|f|'
7>1 |Ij| i

> O

PrOOF OF THEOREM 1.1: By a standard argument it will be sufficient to consider
bounded functions f with compact support. Applying Proposition 2.1

E,=Q UA

where
O =JJ and A=[] A4
E>1 E>1
with A = (B \Q7) N J.
For each k > 1 by the inequality (3.1), condition (1.5) and hypothesis (1.4) we

have that
wP(J.) 1 b
Dl T— k
P(J- 1 P
= wh( k) |Jk|ap [— / |f|m}_1}
tr |kl g,
wP(J, ) _
< Tk | T | P Hf“XJk“I))(,Jk [[v 1||I;</7Jk
KP D
< Ty | Jk| ||f”XJkHX,Jk
KP
<

o /J ||vaJkH§(’Jk dy

k

KPCOP
< M) 0 dy

Taking into account that the operator M)‘(" is bounded from LP(R) to LP(R), we
obtain KPO.CP
W) < S [ e
tp Ji
In consequence,

_ _ KPC,C?
(22) W) s S wip s e [ i
k>1 Yk

k>1
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By Proposition 2.1, for each k > 1 it follows that

Ay = U I,
j>1
where

1 _
<W/I|f| and Ij UI]ng
J

for every j > 1. Then,

wP(Ag) < Z wP(I

Jj=1

P
1 1
LSy [ / I
w e

:_Z I Wl'”/ | flov™ r.

7>1

IN

By the inequality (1.3), condition (1.5), hypothesis (1.4) and keeping in mind that
{Ij_ }j>1 is a family of disjoint dyadic intervals contained in J,

1 _ _
wP(AR) < = > wP (IO fox Il p o [
i>1
Kp
< - p ZU |HfUXJk||X7]j
7>1
s—z/ 1ol
7>1
KpCp
< Z/ ME(foxs,) ()P dy
7>1

<= /JkMX(fUXJk)(y) dy.

Since M;(_ is bounded from LP(R) into LP(R) and {Jj}1>1 is a family of disjoint
dyadic intervals,

D I e O

k>1 Uk>1 Jk
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Then, by (2.2)
2KPC,CP
w(B) < w@) +ur() < 2 [ )P ay,
UkZl Jk

As a consequence of Theorem 1.1 we obtain the next two corollaries.

Corollary 2.2. Let 1 < r < p < 00, 0 < a < 1 and assume that the pair of
weights (w,v) satisfies the following condition: there exists a constant K such
that for every dyadic interval J,

(2.3) BiE [ﬁ wp(J_)] o [ﬁ /J v_rl} ok

Then, for every t > 0 we have

P
ol+2 KPC,), /+oo

w ({o: M) p(H@) > 1)) < —— |/ (@) Po(e)P d,

—00

where C,, ), is the constant of the strong type (p/r,p/r) of the one-sided maximal
Hardy-Littlewood operator M™.

PROOF: Suppose that X is the Orlicz space defined by the Young function B(t) =
t", its associated space X' is given by B(t) ~ . Since 1 < r < p < oo then
M;(' = M, : LP(R) — LP(R) is bounded. Taking into account that

1 , 1/7’
loYx = [— / v—"}
’ [J| Jr

holds for every dyadic interval J, the pair of weights (w,v) satisfies the condi-
tion (1.5). O

Corollary 2.3. Let 1 < p < 1/« and w be a weight. Then, for every measurable
function f and every t > 0 we have that

w({o Mo > 1)) < 2 [ parg, e o

= )

where B, = 22+p_o‘pCp and C), is the constant of the strong type (p,p) of the
one-sided maximal Hardy-Littlewood operator M ™.
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PrROOF: Let r = 1. Given a dyadic interval J = [b,¢) if J= = [a,b) for each
x € J we have that

1 xT
M_wa::sup—/ w(y) dy
@) = s [ )

- 1 b P 1 -
=y J, MO g )

Thus,
1 qye
e [m w( )] 1M ()75 s o
1 3 1/p 1 1 3 —1/p Y
< [ Lw)| st =20

Then, the pair of weights (w/?, Mojp(w)l/p) satisfies the condition (2.3) in Corol-
lary 2.2. (|

PROOF OF THEOREM 1.2: If a = 0, the pair (w, M~ (w)) is independent of p and
this result is a consequence of the weak type (1,1) with respect to (w, M~ (w))
proved by F.J. Martin-Reyes in Theorem 1 of [5], the strong type (0o, 00) and the
Marcinkiewicz interpolation theorem.

Using (1.1) and Corollary 2.3, the proof in the case 0 < a < land 1 < p < 1/«
is similar to Theorem 1.7 in [2]. O

3. Proofs of Theorem 1.3 and Theorem 1.4

Following the techniques employed by C. Pérez in Corollary 1.12 of [8] we will
prove the next result.

PROOF OF THEOREM 1.3: We will choose X a Banach function space with the
following property: there exists a constant C' > 0 such that for all a < b < ¢ with
b — a < ¢ — b we have that

1£lx,b,c) < ClflIx,(are)
and the operator M; : LP(R) — LP(R) is bounded. We will apply Theorem 1

in [9]. For this, it will be sufficient to show that there exists a constant K such
that

1/p
1 b / _ ,
(31)  (c—b)” (b_a/ [M;p,(MMw)(x)]l pd;c> [w? | xr by < K
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for every a < b < ¢ with b —a < ¢ — b. Let X’ be the Orlicz space associated to
Young function B(t) ~ t*' (log™ t)P'].
Since [p'](p — 1) > 1, the integral

/+°° O\ at
e B(t) t
is convergent and applying Theorem 4 in [9] we obtain that the operator M% is

bounded from LP(R) into LP(R) where B is the associated Young function to B.
If A(t) = B(tY/?") ~ t(log™ t)[P'], it is easy to check that

1/p 1/p
107 |1, 5.0y = 0l 4, o)

For each z € [a,b] since ¢ —z < ¢ — a < 2(c — b) we have that

+ () SR V11
Map,(Mp w)(z) > )i |, MP1(w)(z) dz
1 ¢ /
[P]
> By J, MP(w)(2)dz
Then, (3.1) is bounded by
1 ¢ 5
e | P'] P 1/p’
N = AR O I P L

1

PV B AV AV
S P O I A

Taking into account that A(t) ~ t(log™ ¢)[P'l and using the estimate (24) in [8] we
obtain that ) .
lwllage < Koz [ MV w)(e) s

and, it follows that
I <2/ gl

which proves that (3.1) holds. O

We recall that a weight w belongs to the class A;‘ ,1 < p < o0, introduced by
E. Sawyer in [10] if

1 [a 1 a+h 1 p—1
sup (—/ w(y) dy> —/ w(y) P-1dy < oo.
a€R, k>0 \ P Ja—n hJq
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We shall say that w belongs to Ai" if there exists a constant C' > 0 such that
M~ (w)(z) < Cw(z) a.e.

A weight w is in AZ if there exist two positive constants C, § such that for all
a < b < ¢ and every measurable set E C (b, ¢) the inequality

(c—a w(a,b

holds. Similarly the classes A; ;1 < p < oo, were defined.
If 1 <p<q< oo, then Af C Af and A} = (A7)(A7)}7P. The study of
these classes of weights can be found in [5] and [10].

The following proposition extends Theorem 3.4 on page 158 of [4]. Its proof
will be omitted.

Proposition 3.1. Let 0 < aa < 1, 0 < v < 1/(1 — «) and let 1 be a positive
Borel measure on R such that My (u)(x) < oo almost everywhere. Then,
[M7 (1) (x)]Y € AT with a constant depending only on 7.

PROOF OF THEOREM 1.4: For each 0 < 8 < 1, from Proposition 3.1 it follows
that Mg(u) € A7 . Then, Mg(u)l_p € Af c AL. Applying Theorem 3 in [6]
and Theorem 1.3 we have that

+0o0 ,
| @ v, (@) de

—0o0
+o0 , 1
<O ME(H) @) M, (MPlw) @) P da
—0o0
400
<CiCy [ @) wla) P ds,
— 0o

and the proof is complete. (|

Corollary 3.2. Let 1 < p < oo and 0 < o < 1/p’. There exists a constant C' > 0
such that

—+00

+OO / / /
[ @p a0 @lds < ¢ [ i@ w) ds

— o0 — o0

for every measurable function f and every weight w where M Pl js the maximal
Hardy-Littlewood operator iterated [p'] times.

PROOF: The assertion is an immediate consequence of Theorem 1.4. ([l
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