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Two weight norm inequalities for fractional

one-sided maximal and integral operators

Liliana de Rosa

Abstract. In this paper, we give a generalization of Fefferman-Stein inequality for the
fractional one-sided maximal operator:Z +∞

−∞

M+
α (f)(x)

pw(x) dx ≤ Ap

Z +∞

−∞

|f(x)|pM−
αp(w)(x) dx,

where 0 < α < 1 and 1 < p < 1/α. We also obtain a substitute of dual theorem and

weighted norm inequalities for the one-sided fractional integral I+α .
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1. Introduction

For each 0 < α < 1 and f locally integrable on the real line R the fractional
one-sided maximal operators are defined by

M+
α (f)(x) = sup

h>0

1

h1−α

∫ x+h

x
|f(y)| dy and M−

α (f)(x) = sup
h>0

1

h1−α

∫ x

x−h
|f(y)| dy.

In the case α = 0 we have M+
0 = M+ and M−

0 = M− the one-sided maximal
Hardy-Littlewood operators.
The fractional one-sided integral operators are defined by

I+α (f)(x) =

∫ +∞

x

f(y)

(y − x)1−α
dy and I−α (f)(x) =

∫ x

−∞

f(y)

(x − y)1−α
dy.

For each x in R we consider the family of intervals Ax = {I = [a, b) : I is dyadic
and 0 < a− x ≤ b− a}. For each locally integrable function f and 0 < α < 1, its
one-sided dyadic fractional maximal operator is given by

M+
α,D(f)(x) = sup

{

1

|I|1−α

∫

I
|f | : I ∈ Ax

}

.
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Similarly, M−
α,D(f) was introduced.

By Proposition 2.5 in [7] for each 0 < α < 1, there exist two constants Pα and
Qα such that

(1.1) Qα M+
α,D(f)(x) ≤ M+

α (f)(x) ≤ Pα M+
α,D(f)(x).

Let X be a Banach function space on R. We recall that generalized Hölder
inequality

(1.2)

∫

R

|f(y)g(y)| dµ(y) ≤ ‖f‖X‖g‖X′

holds, where X ′ is the associated space.
The X-average of a measurable function f over a bounded interval I is given

by

‖f‖X,I = ‖δ|I|(fχI)‖X ,

where δs is the dilation operator δsf(x) = f(sx), s > 0.
As a consequence of (1.2) we have that for every interval I the inequality

(1.3)
1

|I|

∫

I
|f(y)g(y)| dµ(y) ≤ ‖f‖X,I‖g‖X′,I

holds. The one-sided maximal Hardy-Littlewood operators associated to X were
defined by

M+
Xf(x) = sup

b>x
‖f‖X,(x,b) and M−

Xf(x) = sup
a<x

‖f‖X,(a,x).

We refer the reader to [1] for a complete study of Banach function spaces.
Given an interval I = [a, b) we will denote by I− the interval [a − (b − a), a).

If p > 1 its conjugate exponent will be denoted by p′.
A weight w is a non negative and locally integrable function defined on R.

The following theorem gives us a weak type boundedness for the one-sided
dyadic fractional maximal operator M+

α,D with respect to a pair of weights. It

will be proved in Section 2.

Theorem 1.1. Let 1 < p < ∞ and 0 < α < 1. Let X be a Banach function
space satisfying the following property: there exists a constant C > 0 such that
for every dyadic interval J = [b, c) and each y ∈ J− the inequality

(1.4) ‖f‖X,J ≤ C‖f‖X,(y,c)



Fractional one-sided operators 37

holds, and the operator M+
X : L

p(R) −→ Lp(R) is bounded, that is, there exists
a constant Cp such that for every f

‖M+
X(f)‖p ≤ Cp‖f‖p.

Suppose that the pair of weights (w, v) satisfies the condition

(1.5) |J |α
[

1

|J |
wp(J−)

]1/p

‖v−1‖X′,J ≤ K

for every dyadic interval J .
Then, if for every t > 0 we denote

Et = {x :M+
α,D(f)(x) > t}

we have that,

wp(Et) ≤
2KpCpC

tp

∫ +∞

−∞
|f(y)|pv(y)p dy.

In this paper, every theorem has a corresponding one reversing the orientation
of the real line.

For each 0 ≤ α < n, we consider the maximal operator

Mα(f)(x) = sup
x∈Q

1

|Q|1−α/n

∫

Q
|f(y)| dy

where the supremum is taken over all cubes Q in R
n with edges parallel to the

coordinate axes and |Q| denotes its Lebesgue measure. The inequality
∫

Rn

Mα(f)(x)
pw(x) dx ≤ Ap

∫

Rn

|f(x)|pMαp(w)(x) dx,

where 1 < p < n/α and w is any weight, for α = 0 was obtained by C. Fefferman
and E.M. Stein in [3] and for 0 < α < 1 was proved by D. Cruz-Uribe, in Theo-
rem 1.7 of [2]. We study the one-sided problem and give a proof of the following
result in Section 2.

Theorem 1.2. Let 0 ≤ α < 1 and 1 < p < 1/α. There exists a constant Ap such

that for every weight w the inequality

∫ +∞

−∞
M+

α (f)(x)
pw(x) dx ≤ Ap

∫ +∞

−∞
|f(x)|pM−

αp(w)(x) dx

holds, for every measurable function f and every weight w.

The one-sided fractional maximal operator M+
α is not a linear operator. As a

dual version of Theorem 1.2 we will prove the following result in Section 3.
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Theorem 1.3. Let 1 < p < ∞ and 0 < α < 1/p′. There exists a constant C > 0
such that the inequality

∫ +∞

−∞
M+

α (f)(x)
p [M+

αp′(M
[p′]w)(x)]1−p dx ≤ C

∫ +∞

−∞
|f(x)|p w(x)1−p dx

holds, for every measurable function f and every weight w where M [p′] is the

maximal Hardy-Littlewood operator iterated [p′] times.

For the one-sided fractional integral operator I+α we have the following weighted
norm inequality which will be proved in Section 3.

Theorem 1.4. Let 1 < p < ∞ and 0 < α < 1/p′. There exists a constant C > 0
such that the inequality

∫ +∞

−∞
|I+α (f)(x)|

p [M+
αp′(M

[p′]w)(x)]1−p dx ≤ C

∫ +∞

−∞
|f(x)|p w(x)1−p dx

holds, for every measurable function f and every weight w where M [p′] is the

maximal Hardy-Littlewood operator iterated [p′] times.

Throughout this paper, the letters A, B and C will denote positive constants,
not necessarily the same at each occurrence.

2. Proofs of Theorem 1.1 and Theorem 1.2

The following proposition is a fractional version of Calderon-Zygmund decom-
position. It will be applied in the proof of Theorem 1.1.

Proposition 2.1. Let f belong to L1(R), 0 < α < 1 and t > 0. There exists a
countable family {Jk}k≥1 of dyadic disjoint intervals such that for every k ≥ 1

t <
1

|Jk|
1−α

∫

Jk

|f | ≤ 21−αt.

Moreover,

Et = {x :M+
α,D(f)(x) > t} = Ω− ∪ A,

where

Ω− =
⋃

k≥1

J−
k and A =

⋃

k≥1

Ak

with Ak = (Et\Ω
−) ∩ Jk and for each x in Ak there exists a dyadic interval Ij

satisfying

I−j ∪ Ij ⊆ Jk, x ∈ I−j and t <
1

|Ij |1−α

∫

Ij

|f |.
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Proof: Let D = {I = [a, b) : I is dyadic}. Given an interval I in D such that

(2.1) t <
1

|I|1−α

∫

I
|f |

we have that

|I| <

(

‖f‖1
t

)
1

1−α

,

hence, the measure |I| is finite and there exist maximal dyadic intervals satisfying
(2.1). Let

Ct =

{

J ∈ D : J is maximal with the property t <
1

|J |1−α

∫

J
|f |

}

.

Let J belong to Ct. There exists an intervalH ∈ D such that J ⊂ H and |H | =
2|J |. Taking into account that J is maximal with respect to the property (2.1)
then H /∈ Ct and,

t <
1

|J |1−α

∫

J
|f | ≤

21−α

|H |1−α

∫

H
|f | ≤ 21−αt.

Since the family of dyadic intervalsD is countable we can denote Ct = {Jk}k≥1.

By the definition of M+
α,D we have that Ω

− ∪ A ⊆ Et.

We shall prove that

Et ⊆ Ω
− ∪ A

where

Ω− =
⋃

k≥1

J−
k and A =

⋃

k≥1

Ak with Ak = (Et\Ω
−) ∩ Jk.

Suppose that x ∈ Et and x /∈ Ω−. We shall prove that x ∈ Ak for some k ≥ 1.
Since x ∈ Et, there exists an interval I ∈ D such that

x ∈ I− and t <
1

|I|1−α

∫

I
|f |

and the definition of Ct implies that I ⊆ Jk for some k ≥ 1.
It must be I 6= Jk, because if I = Jk then x ∈ J−

k and x /∈ Ω−. Thus, I 6= Jk

which implies that I− ⊂ J−
k or I− ⊂ Jk. Necessarily I− ⊂ Jk, because in the

other case x ∈ J−
k and x /∈ Ω−, a contradiction. In consequence, I− ∪ I ⊆ Jk.
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Since the family of dyadic intervals is countable, there exists a sequence {Ij}j≥1

of disjoint dyadic intervals satisfying

Ak =
⋃

j≥1

I−j , I−j ∪ Ij ⊆ Jk and t <
1

|Ij |1−α

∫

Ij

|f |.

�

Proof of Theorem 1.1: By a standard argument it will be sufficient to consider
bounded functions f with compact support. Applying Proposition 2.1

Et = Ω
− ∪ A

where
Ω− =

⋃

k≥1

J−
k and A =

⋃

k≥1

Ak

with Ak = (Et\Ω
−) ∩ Jk.

For each k ≥ 1 by the inequality (3.1), condition (1.5) and hypothesis (1.4) we
have that

wp(J−
k ) <

wp(J−
k )

tp
1

|Jk|
(1−α)p

[
∫

Jk

|f |

]p

=
wp(J−

k )

tp
|Jk|

αp
[

1

|Jk|

∫

Jk

|f |vv−1
]p

≤
wp(J−

k )

tp
|Jk|

αp ‖fvχJk
‖
p
X,Jk

‖v−1‖
p
X′,Jk

≤
Kp

tp
|Jk| ‖fvχJk

‖
p
X,Jk

≤
Kp

tp

∫

J−
k

‖fvχJk
‖
p
X,Jk

dy

≤
KpCp

tp

∫

J−
k

M+
X(fvχJk

)(y)p dy.

Taking into account that the operator M+
X is bounded from Lp(R) to Lp(R), we

obtain

wp(J−
k ) ≤

KpCpC
p

tp

∫

Jk

|f |pvp.

In consequence,

(2.2) wp(Ω−) ≤
∑

k≥1

wp(J−
k ) ≤

KpCpC
p

tp

∫S
k≥1 Jk

|f |pvp.
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By Proposition 2.1, for each k ≥ 1 it follows that

Ak =
⋃

j≥1

I−j ,

where

t <
1

|Ij |1−α

∫

Ij

|f | and I−j ∪ Ij ⊆ Jk

for every j ≥ 1. Then,

wp(Ak) ≤
∑

j≥1

wp(I−j )

≤
1

tp

∑

j≥1

wp(I−j )

[

1

|Ij |1−α

∫

Ij

|f |

]p

=
1

tp

∑

j≥1

wp(I−j )|Ij |
αp

[

1

|Ij |

∫

Ij

|f |vv−1

]p

.

By the inequality (1.3), condition (1.5), hypothesis (1.4) and keeping in mind that

{I−j }j≥1 is a family of disjoint dyadic intervals contained in Jk,

wp(Ak) ≤
1

tp

∑

j≥1

wp(I−j )|Ij |
αp‖fvχJk

‖
p
X,Ij

‖v−1‖
p

X′ ,Ij

≤
Kp

tp

∑

j≥1

|Ij |‖fvχJk
‖
p
X,Ij

≤
Kp

tp

∑

j≥1

∫

I−j

‖fvχJk
‖
p
X,Ij

dy

≤
KpCp

tp

∑

j≥1

∫

I−j

M+
X(fvχJk

)(y)p dy

≤
KpCp

tp

∫

Jk

M+
X (fvχJk

)(y)p dy.

Since M+
X is bounded from Lp(R) into Lp(R) and {Jk}k≥1 is a family of disjoint

dyadic intervals,

wp(A) =
∑

k≥1

wp(Ak) ≤
KpCpC

p

tp

∫S
k≥1 Jk

|f(y)|pv(y)p dy.
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Then, by (2.2)

wp(Et) ≤ wp(Ω−) + wp(A) ≤
2KpCpC

p

tp

∫S
k≥1 Jk

|f(y)|pv(y)p dy.

�

As a consequence of Theorem 1.1 we obtain the next two corollaries.

Corollary 2.2. Let 1 ≤ r < p < ∞, 0 < α < 1 and assume that the pair of
weights (w, v) satisfies the following condition: there exists a constant K such

that for every dyadic interval J ,

(2.3) |J |α
[

1

|J |
wp(J−)

]1/p [ 1

|J |

∫

J
v−r′

]1/r′

≤ K.

Then, for every t > 0 we have

wp
({

x :M+
α,D(f)(x) > t

})

≤
21+

p

r KpCp/r

tp

∫ +∞

−∞
|f(x)|pv(x)p dx,

where Cp/r is the constant of the strong type (p/r, p/r) of the one-sided maximal

Hardy-Littlewood operator M+.

Proof: Suppose that X is the Orlicz space defined by the Young function B(t) =

tr, its associated space X ′ is given by B(t) ≈ tr
′
. Since 1 ≤ r < p < ∞ then

M+
X =M+

r : L
p(R) −→ Lp(R) is bounded. Taking into account that

‖v−1‖X′,J =

[

1

|J |

∫

J
v−r′

]1/r′

holds for every dyadic interval J , the pair of weights (w, v) satisfies the condi-
tion (1.5). �

Corollary 2.3. Let 1 < p < 1/α and w be a weight. Then, for every measurable
function f and every t > 0 we have that

w
({

x :M+
α,D(f)(x) > t

})

≤
Bp

tp

∫ +∞

−∞
|f(x)|pM−

αp(w)(x) dx

where Bp = 2
2+p−αpCp and Cp is the constant of the strong type (p, p) of the

one-sided maximal Hardy-Littlewood operator M+.
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Proof: Let r = 1. Given a dyadic interval J = [b, c) if J− = [a, b) for each
x ∈ J we have that

M−
αp(w)(x) = sup

h>0

1

h1−αp

∫ x

x−h
w(y) dy

≥
1

(2|J |)1−αp

∫ b

a
w(y) dy =

1

21−αp

1

|J |1−αp
w(J−).

Thus,

|J |α
[

1

|J |
w(J−)

]1/p

‖M−
αp(w)

−1/pχJ‖∞

≤ |J |α
[

1

|J |
w(J−)

]1/p [ 1

21−αp

1

|J |1−αp
w(J−)

]−1/p

= 2(1/p)−α.

Then, the pair of weights (w1/p, M−
αp(w)

1/p) satisfies the condition (2.3) in Corol-
lary 2.2. �

Proof of Theorem 1.2: If α = 0, the pair (w, M−(w)) is independent of p and
this result is a consequence of the weak type (1, 1) with respect to (w, M−(w))
proved by F.J. Mart́ın-Reyes in Theorem 1 of [5], the strong type (∞,∞) and the
Marcinkiewicz interpolation theorem.
Using (1.1) and Corollary 2.3, the proof in the case 0 < α < 1 and 1 < p < 1/α

is similar to Theorem 1.7 in [2]. �

3. Proofs of Theorem 1.3 and Theorem 1.4

Following the techniques employed by C. Pérez in Corollary 1.12 of [8] we will
prove the next result.

Proof of Theorem 1.3: We will choose X a Banach function space with the
following property: there exists a constant C > 0 such that for all a < b < c with
b − a < c − b we have that

‖f‖X,(b,c) ≤ C‖f‖X,(a,c)

and the operator M+
X : L

p(R) −→ Lp(R) is bounded. We will apply Theorem 1
in [9]. For this, it will be sufficient to show that there exists a constant K such
that

(3.1) (c − b)α

(

1

b − a

∫ b

a
[M+

αp′(M
[p′]w)(x)]1−p dx

)1/p

‖w1/p′‖X′,(b,c) ≤ K
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for every a < b < c with b − a < c − b. Let X ′ be the Orlicz space associated to

Young function B(t) ≈ tp
′
(log+ t)[p

′].
Since [p′](p − 1) > 1, the integral

∫ +∞

e

(

tp
′

B(t)

)p−1
dt

t

is convergent and applying Theorem 4 in [9] we obtain that the operator M+
B
is

bounded from Lp(R) into Lp(R) where B is the associated Young function to B.

If A(t) = B(t1/p′) ≈ t(log+ t)[p
′], it is easy to check that

‖w1/p′‖B,(b,c) = ‖w‖
1/p′

A,(b,c)
.

For each x ∈ [a, b] since c − x ≤ c − a ≤ 2(c − b) we have that

M+
αp′(M

[p′]w)(x) ≥
1

(c − x)1−αp′

∫ c

x
M [p′](w)(z) dz

≥
1

[2(c − b)]1−αp′

∫ c

b
M [p′](w)(z) dz.

Then, (3.1) is bounded by

I = (c − b)α
[

1

[2(c − b)]1−αp′

∫ c

b
M [p′](w)(z) dz

]
1−p

p

‖w‖
1/p′

A,(b,c)

= 21/p′
[

1

c − b

∫ c

b
M [p′](w)(z) dz

]− 1

p′

‖w‖
1/p′

A,(b,c)
.

Taking into account that A(t) ≈ t(log+ t)[p
′] and using the estimate (24) in [8] we

obtain that

‖w‖A,(b,c) ≤ K
1

c − b

∫ c

b
M [p′](w)(z) dz

and, it follows that

I ≤ 21/p′K1/p′ ,

which proves that (3.1) holds. �

We recall that a weight w belongs to the class A+p , 1 < p < ∞, introduced by

E. Sawyer in [10] if

sup
a∈R, h>0

(

1

h

∫ a

a−h
w(y) dy

)

(

1

h

∫ a+h

a
w(y)

− 1

p−1 dy

)p−1

< ∞.
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We shall say that w belongs to A+1 if there exists a constant C > 0 such that

M−(w)(x) ≤ Cw(x) a.e.

A weight w is in A+∞ if there exist two positive constants C, δ such that for all
a < b < c and every measurable set E ⊂ (b, c) the inequality

|E|

(c − a)
≤ C

(

w(E)

w(a, b)

)δ

holds. Similarly the classes A−
p , 1 ≤ p ≤ ∞, were defined.

If 1 ≤ p < q ≤ ∞, then A+p ⊂ A+q and A+p = (A
+
1 )(A

−
1 )
1−p. The study of

these classes of weights can be found in [5] and [10].

The following proposition extends Theorem 3.4 on page 158 of [4]. Its proof
will be omitted.

Proposition 3.1. Let 0 ≤ α < 1, 0 < γ < 1/(1 − α) and let µ be a positive
Borel measure on R such that M−

α (µ)(x) < ∞ almost everywhere. Then,

[M−
α (µ)(x)]

γ ∈ A+1 with a constant depending only on γ.

Proof of Theorem 1.4: For each 0 < β < 1, from Proposition 3.1 it follows
that M+

β (µ) ∈ A−
1 . Then, M

+
β (µ)

1−p ∈ A+p ⊂ A+∞. Applying Theorem 3 in [6]

and Theorem 1.3 we have that

∫ +∞

−∞
|I+α (f)(x)|

p [M+
αp′(M

[p′]w)(x)]1−p dx

≤ C1

∫ +∞

−∞
M+

α (f)(x)
p [M+

αp′(M
[p′]w)(x)]1−p dx

≤ C1C2

∫ +∞

−∞
|f(x)|p w(x)1−p dx,

and the proof is complete. �

Corollary 3.2. Let 1 < p < ∞ and 0 < α < 1/p′. There exists a constant C > 0
such that

∫ +∞

−∞
|I−α (f)(x)|

p′ [M+
αp′(M

[p′]w)(x)] dx ≤ C

∫ +∞

−∞
|f(x)|p

′

w(x) dx

for every measurable function f and every weight w where M [p′] is the maximal

Hardy-Littlewood operator iterated [p′] times.

Proof: The assertion is an immediate consequence of Theorem 1.4. �
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