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Baireness of Ck(X) for ordered X

Michael Granado, Gary Gruenhage

Abstract. We show that if X is a subspace of a linearly ordered space, then Ck(X) is a
Baire space if and only if Ck(X) is Choquet iff X has the Moving Off Property.
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1. Introduction

Let Ck(X) denote the space of continuous real-valued functions on X endowed
with the compact-open topology. G. Gruenhage and D. Ma [GM] defined the
Moving Off Property (MOP), and showed that, for locally compact spaces X ,
Ck(X) is Baire if and only if X has MOP. This result holds more generally for
the class of q-spaces, which includes all locally compact and all first-countable
spaces.
It is an open question whether the Gruenhage-Ma result holds for all completely

regular X . We provide some evidence of an affirmative answer to the question
by showing that it holds whenever X is a GO-space (i.e., a subspace of a linearly
ordered space).
It is also an unsolved problem to find any internal property P of topological

spaces such that X has P iff Ck(X) is Baire. A key to our result that P=MOP
works for GO-spaces is to first obtain a structural result which characterizes when
a GO-space has the MOP. We then use this result to obtain our main theorem.
In the final section, we apply our results to some special cases.
All spaces are assumed to be completely regular.

2. Definitions and background results

Recall that a collection J of subsets of a space X is discrete if every point of X
has a neighborhood meeting at most one member of J . We say J has a discrete
open expansion if for every J ∈ J , there is an open superset UJ of J such that
{UJ : J ∈ J } is a discrete collection.

The second author acknowledges support from National Science Foundation grant DMS-
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A collection K of nonempty compact subsets of a space X is said to be a
moving off collection if for each compact subset M of X there exists a K ∈ K
with M ∩K = ∅. A space X is said to have the Moving Off Property (MOP) if
every moving off collection K in X contains an infinite subcollection K′ which has
a discrete open expansion.

A space X is said to have the Weak Moving Off Property (WMOP) if ev-
ery moving off collection in X contains an infinite discrete subcollection. This
property, which we mention here primarily for completeness, was considered by
A. Bouziad [B]. The WMOP is equivalent to the MOP in locally compact or nor-
mal spaces; in particular, the concepts coincide in the class of GO-spaces. While
the WMOP seems more elegant than the MOP, it cannot serve to characterize
Baireness of Ck(X). Example 4.8 of [G2] gives a completely regular space X with
the WMOP but not the MOP, hence by the next theorem, Ck(X) is not Baire.

Theorem 2.1 ([GM]). If Ck(X) is Baire, then X has the MOP.

We will also make use of the following results.

Theorem 2.2 ([GM]). Suppose X has the MOP. Then:

(a) if X has a countable local base at p, then X is locally compact at p;
(b) if X is countably compact, then X is compact.

Theorem 2.3 ([G1]). If a space X is paracompact and locally compact, then X
has the MOP.

Let X be a nonempty topological space. The Choquet game GX of X is
defined as follows: Players Empty (E) and Nonempty (NE) take turns in choosing
nonempty open subsets of X . Player E starts by choosing U0 ⊂ X and NE
responds with V0 ⊂ U0. In the nth round, n ≥ 1, E and NE choose in turn
non-empty open sets Un and Vn, with Vn ⊂ Un ⊂ Vn−1. We say that E wins the
game if

⋂
n Un = ∅; otherwise NE wins.

It is well-known that a space X is a Baire space iff E has no winning strategy in
the Choquet game. If NE has a winning strategy, then X is said to be a Choquet
space1. Choquet spaces are also called weakly α-favorable spaces .

Ma [Ma] proved the following characterization of Choquetness of Ck(X) for
locally compact X :

Theorem 2.4. Suppose X is locally compact. Then Ck(X) is Choquet iff X is
paracompact.

We will use the following characterization of paracompactness in GO-spaces
([EL]):

1We are following the terminology of Kechris [Ke].
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Theorem 2.5. Let X be a GO-space. Then X is not paracompact if and only
for some regular uncountable cardinal κ, there exists a closed subspace T of X
which is homeomorphic to a stationary subset S of κ; furthermore, when such T
and S exist, one may assume that there is a homeomorphism h : S → T that is
either order-preserving or order-reversing.

We follow Kunen [Ku] for set-theoretic terminology. A subset A of an ordered
set X is cofinal (resp., coinitial) in X if for every x ∈ X , there is a ∈ A with x ≤ a
(resp., a ≤ x). A cardinal κ is regular if there is no cofinal subset A of κ with
|A| < κ. A subset C of an uncountable regular cardinal κ is closed unbounded
(c.u.b.) in κ if it is cofinal in κ and closed in the order topology, and a subset S of
κ is stationary in κ if S∩C 6= ∅ whenever C is c.u.b. in κ. The main set-theoretic
fact that we will use about stationary sets is the so-called Pressing Down Lemma:

Theorem 2.6. Let S be a stationary subset of a regular uncountable cardinal κ.
Suppose f : S → κ is such that f(α) < α for every α ∈ S, α > 0. Then there is
some β ∈ κ and a stationary (hence unbounded) subset T of S such that f(α) = β
for every α ∈ T .

We also use the more elementary fact that for any stationary set S, the set S′

of limit points in S is stationary as well.

3. Characterization of the MOP for ordered spaces

Let X be a GO-space. Then there exists a compact ordered space X∗ contain-
ing X as a dense subspace ([L]). Elements of X∗\X are called gaps in X . For
A ⊂ X , we will denote by supA and inf A the obvious elements of X∗ (which
may or may not be in X).
A subset C of X is called convex in X , if for all a, b ∈ C, {x ∈ X : a < x <

b} ⊆ C.
Let X be a GO space, and let p ∈ X . Then X is said to be left first-countable

(resp., left locally compact) at p if p is a point of first-countability (resp., local
compactness) in (←, p]. The terms right first-countable and right locally compact
are defined analogously.
Define an equivalence relation on a GO-space X by a ∼ b iff [a, b] or [b, a] is

compact, and let J be the collection of equivalence classes. Note that J is a
pairwise-disjoint collection of convex subsets of X . It is also easy to see that each
J ∈ J is a locally compact subspace of X . The following theorem is the main
result of this section.

Theorem 3.1. Let X be a GO-space. Then X has the MOP iff the following
two properties hold:

(I) every J ∈ J is σ-compact;
(II) for any point p ∈ X , if X is left first-countable at p, then X is left locally

compact at p, and if X is right first-countable at p, then X is right locally
compact at p.



106 M.Granado, G.Gruenhage

Proof: We first show the reverse direction. Assume (I) and (II) hold; we will
show that X has the MOP.

Claim. If K is a compact subset of X, then J (K) = {J ∈ J : J ∩K 6= ∅} is
finite.

To see this, suppose by way of contradiction that there is a compact set K
and a countably infinite J ′ ⊂ J such that, for every J ∈ J ′, J ∩K 6= ∅. Then
there is a point p in K such that every neighborhood of p meets infinitely many
J ∈ J ′. W.l.o.g., each J ∈ J ′ falls to the left of p. It follows that X is left
first-countable at p, hence by (II), is left locally compact at p. But then some
point y < p is in the same equivalence class as p, yet [y, p] meets infinitely many
distinct equivalence classes; this is a contradiction which proves the claim.
Let K be a moving off collection of compact sets. Each J ∈ J is σ-compact

and locally compact, so we can write J =
⋃

n∈ω Jn, where each Jn is compact
and every compact subset of J is contained in some Jn.
Now choose K0 ∈ K. If Ki ∈ K has been chosen for each i < n, choose Kn ∈ K

disjoint from

(
⋃

i<n

Ki) ∪
⋃
{Ji : i ≤ n, J ∈

⋃

i<n

J (Ki)}.

We show that {Ki}i∈ω is a discrete subcollection of K. Suppose p is a limit
point. W.l.o.g., p is a limit from the left. In the same way as in the proof of the
Claim, there is y < p such that [y, p] is compact. Then [y, p] ⊂ J for some J ∈ J ,
and [y, p]∩Kn 6= ∅ for some n. So J ∈ J (Kn), and [y, p] ⊂ Jm for some m. Then
if l > max{m, n}, by the construction Kl∩Jm = ∅. Thus [y, p] meets only finitely
many Ki, a contradiction. This completes the proof of the reverse direction.
Now we prove the forward direction. Suppose X has the MOP. Then so does

any closed subset of X , in particular, closed intervals. By Theorem 2.2(a), points
of first-countability must be points of local compactness. It follows that left (resp.,
right) first-countable implies left (resp., right) compact at any point, so (II) holds.
To see that (I) holds, let J be a ∼ equivalence class, and suppose J is not σ-

compact. Then J either has no countable cofinal subset or no countable coinitial
subset. Suppose w.l.o.g. that J has no countable cofinal subset. Then supJ /∈ J ,
hence sup J /∈ X , so J is closed (on the right) in X . Let κ be the minimal cardinal
of a cofinal subset of J . Note that κ is regular. Since [a, b] is compact for every
a, b ∈ J , one sees that supA ∈ J for any subset of J of cardinality less than κ.
It follows that one may construct by induction a continuous increasing mapping
f : κ→ J with supJ = sup ran(f). But then ran(f) is a closed in X copy of the
ordinal space κ. Since κ is countably compact but not compact, this contradicts
Theorem 2.2(b) and completes the proof of the theorem. �

4. Baireness of Ck(X) for ordered X

In this section, we use the characterization of the MOP for GO-spaces obtained
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in the last section to prove the following theorem:

Theorem 4.1. Let X be GO-space. The following are equivalent:

(a) Ck(X) is Baire;
(b) X has the MOP;
(c) Ck(X) is Choquet.

For the proof of the above result and for results in the next section, it will be
handy to have the following lemma.

Lemma 4.2. Suppose X is a GO-space, p ∈ X , and that S is a cofinal subset
of (←, p) which is homeomorphic to a stationary subset of a regular uncountable
cardinal. Suppose also that X is left locally compact at every point of S, and
that p is a limit point of S. Then X is left locally compact at p.

Proof: Let S′ be the set of limit points of S inside S. Then for each α in
S′, there is some βα ∈ S with βα < α such that the closed interval [βα, α] is
compact. Since S′ is stationary, by the Pressing Down Lemma there is β ∈ S
and an unbounded subset T of S′ such that [β, α] is compact for every β ∈ T . It
follows that [β, p] is compact, and the lemma is proved. �

Proof of Theorem 4.1: By Theorem 2.1, (a) implies (b) is true for any
space X . That (c) implies (a) is immediate from the definitions. It remains
to prove (b) implies (c). To this end, suppose X has the MOP.
We need to define a winning strategy for NE in the Choquet game on Ck(X).

W.l.o.g., we may assume both players restrict their choices to basic open sets of
the form

B(f, K, ǫ) = {g ∈ C(X) : ∀x ∈ K(|f(x)− g(x)| < ǫ)}

where f ∈ C(X), K is compact, and ǫ > 0. Some ideas in the proof below are
similar to those in Theorem 8.3 of [MN]. Indeed, it is possible to prove in our
case that II has a winning strategy in the game Γ2(X) defined in [MN], and quote
their Theorem 8.3 to conclude that Ck(X) is Choquet. However, there is a gap
in their proof of Theorem 8.3; although that gap can be fixed, we choose here to
give instead a direct proof of (b) implies (c).
As in the proof of Theorem 3.1, any compact setK meets only a finite collection

J (K) of members of J , the family of ∼ equivalence classes. And since each
member J of J is σ-compact and locally compact , we can write J =

⋃
n∈ω Jn,

where J0, J1, . . . is an increasing sequence of compact subsets of J such that every
compact subset of J is contained in Jn for some n.
Now suppose B(fn, Kn, ǫn) is E’s move in the nth round. Let NE respond with

B(fn, Ln, ǫ′n), where

Ln = Ln−1 ∪Kn ∪
⋃
{Jn : J ∈ J (Ln−1 ∪Kn)},
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and ǫ′n = min{ǫn/2, 1/2n}.
Note that by induction, the Ln’s are increasing, and Ln ⊃

⋃
i≤n Ki. Also, if

m < n < l, then fl ∈ B(fn, Ln, ǫ′n), so |fl(x) − fn(x)| < 1/2n for all x in Ln,
hence for all x ∈ Lm. It follows that, for each fixed m, {fn ↾ Lm : n ∈ ω} is
a Cauchy sequence in the topology of uniform convergence, hence converges to a
unique gm : Lm → R. Note that gn ↾ Lm = gm for n ≥ m; thus if L =

⋃
n∈ω Ln,

then g =
⋃

n∈ω gn is a function from L to R.
We plan to show that L is closed in X and that g is continuous on L. To

this end, we will show that if L′
0 = L0 and L′

n = Ln\Ln−1 for n ≥ 1, then
{L′

n}n∈ω is a locally finite collection. Suppose by way of contradiction that every
neighborhood of a point p meets L′

n for infinitely many n. W.l.o.g., p is a limit
from the left of the L′

n’s.

Claim. X is left locally compact at p. If p is not a limit point from the left of L′
n

for any n, then (←, p) has countable cofinality, so X must be left first-countable
at p and hence by Theorem 3.1, X is left locally compact at p; thus the claim
holds in this case. Now assume p is a limit point from the left of L′

n for some
fixed n. If there is a countable subset of L′

n cofinal in (←, p), then again X is left
first-countable at p and the claim holds as before. So suppose the cofinality of
L′

n ∩ (←, p) is uncountable. Then for some uncountable regular cardinal κ, there
is a continuous increasing function θ : κ → L′

n ∩ (←, p) whose range is cofinal
in L′

n ∩ (←, p). Let S be the subset of κ consisting of the limits of countable
cofinality in κ. Then S is stationary in κ, and X is left first-countable, hence
left locally compact, at each point of θ(S). Now the claim follows by applying
Lemma 4.2 to θ(S).
From the claim, we easily get a contradiction. Let y < p such that [y, p] is

compact. Then [y, p] ⊂ Ji some J ∈ J and i ∈ ω. Since p is a limit from the left
of {L′

n}n∈ω, we have that Lm ∩ [y, p] 6= ∅ for infinitely many m, and it follows
from the construction that for sufficiently large n, Ln ⊃ Ji. This is easily seen to
be a contradiction to the assumption that p is a limit from the left of the L′

n’s.
Now, since we have shown that {L′

n}n∈ω is a locally finite collection of closed
sets, we have that L =

⋃
n∈ω L′

n is closed in X , and furthermore, since g ↾ L′
n is

continuous for each n, we also have that g is continuous on L. Hence g extends to a
continuous g∗ : X → R and it is straightforward to show that g∗ ∈ B(fm, Km, ǫm)
for every m ∈ ω. This completes the proof. �

5. Applications

In this section, we apply our main result to get further results in some special
cases.

Lemma 5.1. Let κ be a regular uncountable cardinal.

(a) Suppose S is a stationary co-stationary subset of κ. Then there is a c.u.b.
C in κ such that S is not locally compact at any point of C ∩ S;
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(b) If N is a non-stationary subset of κ, then κ\N does not have the MOP.

Proof: For (a), let D = S ∩ κ\S, and let C be the set of non-isolated points of
the subspace D. Then C is c.u.b., and it is easy to check that no point of C ∩ S
is a point of local compactness in S.
For (b), consider a c.u.b. C ⊂ κ\N . Then C is countably compact but not

compact, hence cannot have the MOP �

We now get the following characterizations for GO-spaces which are locally
compact or first-countable:

Theorem 5.2. Let X be a locally compact GO-space. Then the following are
equivalent:

(a) X has the MOP;
(b) X is paracompact;
(c) Ck(X) is Baire;
(d) Ck(X) is Choquet.

Proof: By Theorem 2.4, Ck(X) is Choquet iff X is paracompact, and by Theo-
rem 2.1, Baireness of Ck(X) implies X has the MOP.
Thus it remains to show that for a locally compact GO-space X , if X has

the MOP, then X is paracompact. Suppose X is not paracompact. Then X
contains a closed subset S homeomorphic to a stationary subset of a regular
uncountable cardinal κ. Since S is locally compact, by Lemma 5.1(a), S cannot
be co-stationary, hence must contain a copy of a club C in κ. But by 5.1(b), C
does not have the MOP, contradiction. �

Corollary 5.3. Let X be a first-countable GO-space. Then the following are
equivalent:

(a) X has the MOP;
(b) X is paracompact and locally compact;
(c) Ck(X) is Baire;
(d) Ck(X) is Choquet.

Proof: Recall that first-countable implies locally compact for spaces having the
MOP. Hence this corollary is an immediate consequence of the previous theorem.

�

Now we apply our results to obtain a characterization for GO-spaces with a
well-order, or, equivalently, subspaces of an ordinal. For a space X , we denote
by LC(X) the points of local compactness. Note that LC(X) is an open locally
compact subspace of X .
For X a subset of an ordinal, we say a point x ∈ X has countable cofinality

relative to X if there is a countable subset of X which is cofinal in X ∩ (←, x).
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Theorem 5.4. Let X be a subspace of an ordinal. Then X has the MOP iff
LC(X) is paracompact and contains all points of countable cofinality relative
to X .

Proof: We first prove the forward direction. Suppose X has the MOP. That
LC(X) contains all points of countable cofinality relative to X is immediate from
Theorem 3.1. Suppose LC(X) is not paracompact. Then there is a closed subset
Y of LC(X) such that Y is homeomorphic to a stationary subset S of a regular
uncountable cardinal κ. Since X is well-ordered, we may assume that there is an
order-preserving homeomorphism h : S → Y . By Lemma 5.1, since each point of
Y is a point of local compactness, S cannot be co-stationary, i.e., S contains some
c.u.b. C in κ. Since h(C) cannot have the MOP, h(C) cannot be closed in X . It
follows that p = sup(h(C)) = sup(Y ) is a point of X\LC(X) and is a limit point
of h(C). But since each point of Y is a point of local compactness, by Lemma 4.2,
p ∈ LC(X), which is a contradiction.

For the reverse direction, suppose LC(X) is paracompact and contains all
points of countable cofinality relative to X . Then condition (II) of Theorem 3.1
holds, so we need to show (I) holds. Let J be a ∼ equivalence class. Then
J ⊂ LC(X). Note that J is σ-compact iff J has a countable cofinal subset. Sup-
pose J has no countable cofinal subset. Then p = supJ /∈ J and there is a copy K
of a regular uncountable cardinal in J such that sup(K) = sup(J). Since LC(X)
is paracompact, K cannot be closed in LC(X) by Theorem 2.5 , so p ∈ LC(X)
and hence p ∈ J by Lemma 4.2, which is a contradiction. �

Examples.

(a) A subspace X of the space ω1 of countable ordinals has the MOP iff X
is locally compact and non-stationary.

(b) Let Y be the set of ordinals in ω2 of uncountable cofinality. Then Y has
the MOP.

(c) Let Y ∗ be Y above but with the reverse ordering, and letX be the linearly
ordered space consisting of the ordinal space ω1+1 followed a copy of Y ∗.
Then X has the MOP, but LC(X) is not paracompact.

Proof: To see (a), note that in this situation we have LC(X) = X , and recall
that a subset X of ω1 is paracompact iff X is non-stationary. To see (b), note that
LC(Y ) is the set of isolated points of Y , hence LC(Y ) is paracompact. Finally, for
(c), note that the ∼ equivalence classes consist of ω1 + 1 and singletons y ∈ Y ∗.
Thus X satisfies condition (I) of Theorem 3.1. It is easy to see that X also satisfies
condition (II), so X has the MOP. But LC(X) contains the space ω1 of countable
ordinals as a relatively closed subspace, hence LC(X) is not paracompact. �

It follows from the last example that the characterization of the MOP in well-
ordered GO-spaces given by Theorem 5.4 does not hold for general GO-spaces.
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