Konrad Pióro

Abstract. The aim of the paper is to show that no simple graph has a proper subgraph with the same neighborhood hypergraph. As a simple consequence of this result we infer that if a clique hypergraph \mathcal{G} and a hypergraph \mathcal{H} have the same neighborhood hypergraph and the neighborhood relation in \mathcal{G} is a subrelation of such a relation in \mathcal{H} , then \mathcal{H} is inscribed into \mathcal{G} (both seen as coverings). In particular, if \mathcal{H} is also a clique hypergraph, then $\mathcal{H} = \mathcal{G}$.

Keywords: graph, neighbor, neighborhood hypergraph, clique hypergraph

Classification: 05C99, 05C69, 05C65

Recall (see e.g. [1]) that a hypergraph $\mathcal{G} = (V, \mathcal{E})$ consists of a finite set V of vertices and a finite sequence \mathcal{E} of hyperedges, where each hyperedge is a non-empty subset of V, and the union of all hyperedges is V (note that a hypergraph may have multiple hyperedges). A hypergraph is *simple*, if no hyperedge is contained in another hyperedge.

With an ordinary graph G at least two hypergraphs can be associated. The first consists of all maximal cliques of G and is called the clique hypergraph. These hypergraphs form an important subclass of hypergraphs. For example, they are related with the Helly property (see [1]), and they also appear in the clique-transversal problem (see [4]), and consequently in graph coloring problems (see e.g. [5]).

The second hypergraph associated with G is formed by neighborhoods of vertices. Recall (see [1]) that two vertices of G are neighbors if they are adjacent or equal. The set of all neighbors of a vertex v is denoted by $N_G(v)$ and called the neighborhood of v. Next, we take all pairwise different neighborhoods in G to obtain a new hypergraph $\mathcal{N}(G)$ on the vertex set of G, called the neighborhood hypergraph of G. $\mathcal{N}(G)$ has no multiple hyperedges, but, in general, $\mathcal{N}(G)$ is not simple. Of course, hypergraphs $\mathcal{N}(H)_{\text{max}}$ (consisting of all maximal hyperedges of $\mathcal{N}(G)$ with respect to inclusion) and $\mathcal{N}(G)_{\min}$ (consisting of all minimal hyperedges of $\mathcal{N}(G)$) are simple, but they play no important role here.

Theorem 1. Let G be a simple graph and H its subgraph. If $\mathcal{N}(H) = \mathcal{N}(G)$, then H = G.

PROOF: Take a vertex v of H such that $N_H(v)$ is maximal up to inclusion. Let X_H be the set of all vertices w of H such that $N_H(w) = N_H(v)$, and X_G be the set of all vertices w of G such that $N_G(w) = N_H(v)$.

Since $N_H(v)$ corresponds to a maximal (up to inclusion) hyperedge of $\mathcal{N}(H) = \mathcal{N}(G)$ and H is a subgraph of G, we infer that

$$X_H \subseteq X_G,$$

in particular $N_H(v) = N_G(v)$.

Assume that there is a vertex $w \in X_G \setminus X_H$. Since $N_G(w) = N_H(v)$ and $w \in N_G(w)$ (by the definition), the vertices v and w are adjacent in H, thus also in G.

Since $N_H(w) \subseteq N_G(w) = N_H(v)$ and $N_H(w) \neq N_H(v)$ (by the assumption), there exists a vertex u such that

$$u \in N_H(v) = N_G(w)$$
 and $u \notin N_H(w)$.

Then

$$N_H(u) \neq N_G(u).$$

Hence and by the equality $\mathcal{N}(\mathcal{H}) = \mathcal{N}(\mathcal{G})$, there is a vertex u' such that

$$N_H(u) = N_G(u').$$

Then $v \in N_H(u) = N_G(u')$, i.e. the vertices v and u' are adjacent in G.

On the other hand,

$$w \notin N_H(u) = N_G(u'),$$

 \mathbf{so}

$$u' \notin N_G(w) = N_H(v) = N_G(v),$$

i.e. the vertices u' and v are not adjacent in G. This contradiction implies

$$X_H = X_G.$$

Observe now that the vertices of $X = X_H = X_G$ form a clique in both the graphs H and G and the sets of neighbors of every vertex of X in the rest of the graphs H and G are the same. Thus to end the proof it is sufficient to apply the induction (on the order of graph) to the pair of graphs $H \setminus X$ and $G \setminus X$ (note that they may have isolated vertices, but it is not a problem).

Recall that a simple hypergraph \mathcal{G} is said to be a *clique hypergraph*, if it is the clique hypergraph of some graph G. Observe that neighborhoods of each vertex v in \mathcal{G} and G are the same, in particular $\mathcal{N}(\mathcal{G}) = \mathcal{N}(G)$ (where neighbors in a hypergraph are defined analogously as for a graph). Moreover, G is uniquely

determined (therefore it will be sometimes denoted by $G_{\mathcal{G}}$). Because two different vertices of G are adjacent if and only if they are both contained in a hyperedge of \mathcal{G} . Hence it also easy follows (see [1]) that a simple hypergraph $\mathcal{G} = (V, \mathcal{E})$ is a clique hypergraph if and only if for each subset A of V, the following condition holds:

 (C_2) if every pair of vertices of A belongs to some hyperedge of \mathcal{G} , then A is contained in a hyperedge of \mathcal{G} .

(Hypergraphs satisfying (C_2) , not necessarily simple, were called conformal by Berge in [1]. However, today the concept of conformality has a slightly different meaning (see e.g. [6]).)

 (C_2) is related with the Helly property (see [1]). More precisely, a hypergraph $\mathcal{G} = (V, \mathcal{E})$ has the Helly property (i.e. for any $\mathcal{F} \subseteq \mathcal{E}$, if any two hyperedges in \mathcal{F} have a non-empty intersection, then the intersection of \mathcal{F} is also non-empty) if and only if its dual \mathcal{G}^* satisfies (C_2) . $\mathcal{G}^* = (\mathcal{E}, V^*)$ is the hypergraph whose vertices are hyperedges of \mathcal{G} and the set of hyperedges is $V^* = \{\mathcal{G}(v): v \in V\}$, where $\mathcal{G}(v) = \{E \in \mathcal{E}: v \in E\}$. Gilmore's Theorem (see Chapter 1, §7 in [1]) gives the following necessary and sufficient condition for a hypergraph \mathcal{G} to satisfy (C_2) : for every three hyperedges E_1, E_2, E_3 of \mathcal{G} , there is a hyperedge of \mathcal{G} containing the set $(E_1 \cap E_2) \cup (E_2 \cap E_3) \cup (E_3 \cap E_1)$. The condition can be easily translated into the Helly property (see [1]). This result have been generalized by Berge and Duchet in [3] (see also [1]) to hypergraphs with the k-Helly property (i.e. for any family \mathcal{F} of hyperedges of \mathcal{G} , if every subfamily of \mathcal{F} with at most k elements has a non-empty intersection, then \mathcal{F} also has a non-empty intersection). The k-Helly property corresponds with the condition (C_k) obtained from (C_2) by replacing "every pair" with "every subset with at most k vertices".

We say that a hypergraph \mathcal{H} is *inscribed into* a hypergraph \mathcal{G} if for any hyperedge F of \mathcal{H} there is a hyperedge E of \mathcal{G} such that $F \subseteq E$. It is just a reformulation of the well-known notion for covering in the case of hypergraphs.

Theorem 2. Let \mathcal{G} be a clique hypergraph and \mathcal{H} be an arbitrary hypergraph with the same vertex set such that

(*) $N_{\mathcal{G}}(v) \subseteq N_{\mathcal{H}}(v)$ for each vertex v, (**) $\mathcal{N}(\mathcal{G}) = \mathcal{N}(\mathcal{H})$.

Then \mathcal{H} is inscribed into \mathcal{G} .

PROOF: Take an auxiliary graph H with the same vertex set as \mathcal{H} such that two different vertices of H are adjacent if and only if they are contained in a common hyperedge of \mathcal{H} . Then $N_H(v) = N_{\mathcal{H}}(v)$ for any vertex v. Hence and by (*) we first infer that the graph $G_{\mathcal{G}}$ is a subgraph of H. Secondly, $\mathcal{N}(G_{\mathcal{G}}) = \mathcal{N}(H)$ by (**). Thus by Theorem 1 we obtain $G_{\mathcal{G}} = H$, i.e. \mathcal{G} is the clique hypergraph of H. It easily implies that \mathcal{H} is inscribed into \mathcal{G} .

By the above proof we obtain in particular that for any hypergraph \mathcal{H} there exists exactly one clique hypergraph \mathcal{H}' with the same vertex set such that \mathcal{H} is

inscribed into \mathcal{H}' and $N_{\mathcal{H}'}(v) = N_{\mathcal{H}}(v)$ for each vertex v (it is sufficient to take the graph H for \mathcal{H} as above and its clique hypergraph).

This fact and Theorem 2 (because the relation "to be inscribed into" is a partial order for simple hypergraphs) imply that \mathcal{G} is a clique hypergraph if and only if for each simple hypergraph \mathcal{H} with the same vertex set, if \mathcal{G} is inscribed into \mathcal{H} and $\mathcal{N}(\mathcal{H}) = \mathcal{N}(\mathcal{G})$, then $\mathcal{H} = \mathcal{G}$. In particular

Corollary 3. Let \mathcal{G} and \mathcal{H} be clique hypergraphs with the same vertex set satisfying (*) and (**). Then $\mathcal{G} = \mathcal{H}$.

By Theorem 2 we obtain also that if a clique hypergraph \mathcal{G} is a subhypergraph of a hypergraph \mathcal{H} and $\mathcal{N}(\mathcal{G}) = \mathcal{N}(\mathcal{H})$, then \mathcal{H} is inscribed into \mathcal{G} . In particular, if \mathcal{H} is simple, then $\mathcal{G} = \mathcal{H}$.

Now we translate the above results for hypergraphs having the Helly property. Observe that Theorem 2 holds also for hypergraphs satisfying (C_2) . Because if \mathcal{G} is such a hypergraph, then \mathcal{G}_{\max} is a clique hypergraph, and also $N_{\mathcal{G}_{\max}}(v) = N_{\mathcal{G}}(v)$ for any vertex v.

For hypergraphs $\mathcal{G} = (V, (E_1, \ldots, E_n))$ and $\mathcal{H} = (W, (E'_1, \ldots, E'_n))$ we will "assume" in the results below that \mathcal{G}^* and \mathcal{H}^* (and also $\mathcal{N}(\mathcal{G}^*)$ and $\mathcal{N}(\mathcal{H}^*)$) have the same vertex set $\{E_1, \ldots, E_n\}$. Say more formally, we identify hyperedges E_i and E'_i , i.e. the equality $\mathcal{G}^* = \mathcal{H}^*$ denotes that the natural correspondence $E_i \longmapsto E'_i$ forms an isomorphism between these hypergraphs.

Corollary 4. Let $\mathcal{G} = (V, (E_1, \dots, E_n))$ be a hypergraph with the Helly property. Let $\mathcal{H} = (W, (E'_1, \dots, E'_n))$ be a hypergraph satisfying

- (*) for any $1 \le i, j \le n$, $E_i \cap E_j \ne \emptyset \Longrightarrow E'_i \cap E'_j \ne \emptyset$,
- $(**) \ \mathcal{N}(\mathcal{H}^*) = \mathcal{N}(\mathcal{G}^*).$

Then for each $w \in W$, there is $v \in V$ such that for any $1 \le i \le n$,

$$w \in E'_i \Longrightarrow v \in E_i.$$

PROOF: (*) implies $N_{\mathcal{G}^*}(E_i) \subseteq N_{\mathcal{H}^*}(E'_i)$ for each i = 1, 2, ..., n. Hence, \mathcal{H}^* is inscribed into \mathcal{G}^* . This implies the thesis.

The implication in the above result cannot be replaced by the equivalence. Take the following two hypergraphs $\mathcal{G} = (\{1, 2, 3, 4\}, (\{1, 2\}, \{2, 3\}, \{3, 4\}))$ and $\mathcal{H} = (\{1, 2, 3, 4\}, (\{1, 2\}, \{2, 3, 5\}, \{3, 4\}))$. Then \mathcal{G} and \mathcal{H} satisfy the conditions (*) and (**), and \mathcal{G} has the Helly property. On the other hand, $\mathcal{H}(5) = \{\{2, 3, 5\}\}$, and $\mathcal{G}(2) = \{\{1, 2\}, \{2, 3\}\}, \mathcal{G}(3) = \{\{2, 3\}, \{3, 4\}\}.$

Take a hypergraph $\mathcal{G} = (V, (E_1, \ldots, E_n))$ and note that \mathcal{G}^* is simple if and only if for each vertices $v, w \in V$, the following condition holds:

$$(DS) \qquad \{E_i : v \in E_i\} \subseteq \{E_j : w \in E_j\} \Longrightarrow v = w.$$

Thus by Corollary 3 we obtain (because $(\mathcal{G}^*)^* = \mathcal{G}$):

Corollary 5. Let hypergraphs with the Helly property $\mathcal{G} = (V, (E_1, \ldots, E_n))$ and $\mathcal{H} = (W, (E'_1, \ldots, E'_n))$ satisfy (DS) and (*), (**) of Corollary 4. Then $\mathcal{G} = \mathcal{H}$ (strictly formally, \mathcal{G} and \mathcal{H} are isomorphic).

Using the last corollary of Theorem 1 (i.e. its modified version in which we assume that \mathcal{G} satisfies (C_2) we can also show that if a hypergraph \mathcal{G} having the Helly property is a subhypergraph of a hypergraph \mathcal{H} and $\mathcal{N}(\mathcal{G}^*) = \mathcal{N}(\mathcal{H}^*)$, then \mathcal{H} has also the Helly property. If \mathcal{H} satisfies additionally (DS), then $\mathcal{H} = \mathcal{G}$.

Observe that to a given hypergraph $\mathcal{G} = (V, (E_1, \ldots, E_n))$ new vertices can be added in such a way that the obtained hypergraph has the Helly property. More precisely, there is a hypergraph $\mathcal{G}' = (V', (E'_1, \dots, E'_n))$ such that

- (i) $E_i \subseteq E'_i$ for i = 1, ..., n, (ii) for each $1 \le i, j \le n$, $E'_i \cap E'_j \ne \emptyset \iff E_i \cap E_j \ne \emptyset$,
- (iii) \mathcal{G}' has the Helly property.

Take the dual hypergraph \mathcal{G}^* , and the graph G with vertices E_1, \ldots, E_n such that E_i and E_j $(i \neq j)$ are adjacent if and only if they both belong to a hyperedge of \mathcal{G}^* . Next, take the hypergraph \mathcal{H} consisting of all maximal cliques of G and all hyperedges of \mathcal{G}^* . Then \mathcal{G}^* is inscribed into \mathcal{H} , so \mathcal{H}_{\max} is a clique hypergraph, which implies that \mathcal{H} satisfies (C_2) . Moreover, $N_{\mathcal{H}}(E_i) = N_G(E_i) = N_{\mathcal{G}^*}(E_i)$ for each $i = 1, \ldots, n$. Thus it is sufficient to take $\mathcal{G}' = \mathcal{H}^*$.

Now we show that the assumptions of Theorems 1 and 2 (thus also their corollaries) are necessary. First, the following graphs $G = (\{1,2\},\{2,3\},\{3,4\},\{1,4\})$ and $H = (\{1,3\}, \{3,4\}, \{2,4\}, \{1,2\})$ are different, but they have the same neighborhood hypergraph (because $\mathcal{N}(G)$ and $\mathcal{N}(H)$ consist of all three-element subsets of $\{1, 2, 3, 4\}$). Further, the clique hypergraphs of G and H are equal to G and H, respectively.

Secondly, take the following hypergraphs $\mathcal{G} = (\{1, 5, 6, 7\}, \{1, 4, 5, 7\}, \{2, 3, 4, 7\})$ and $\mathcal{H} = (\{1, 5, 6, 7\}, \{1, 2, 4, 5, 7\}, \{2, 3, 4, 7\})$. It is easy to see that they are clique hypergraphs. \mathcal{G} and \mathcal{H} satisfy (*) of Theorem 2, and (**) does not hold, since $N_{\mathcal{G}}(1) = \{1, 4, 5, 6, 7\} \notin \mathcal{N}(\mathcal{H})$. On the other hand, $\mathcal{N}(\mathcal{G})_{\max} = \mathcal{N}(\mathcal{H})_{\max}$ (because they have exactly one hyperedge $N_{\mathcal{G}}(7) = N_{\mathcal{H}}(7) = \{1, 2, \dots, 7\}$) and $\mathcal{N}(\mathcal{G})_{\min} = \mathcal{N}(\mathcal{H})_{\min}$ (because they have exactly two hyperedges $N_{\mathcal{G}}(3) =$ $N_{\mathcal{H}}(3) = \{2, 3, 4, 7\}$ and $N_{\mathcal{G}}(6) = N_{\mathcal{H}}(6) = \{1, 5, 6, 7\}$). Observe also that $G_{\mathcal{G}}$ is a proper subgraph of $G_{\mathcal{H}}$ (where $G_{\mathcal{G}}$ and $G_{\mathcal{H}}$ are the graphs corresponding to \mathcal{G} and \mathcal{H} , although $\mathcal{N}(G_{\mathcal{H}})_{\max} = \mathcal{N}(G_{\mathcal{G}})_{\max}$ and $\mathcal{N}(G_{\mathcal{H}})_{\min} = \mathcal{N}(G_{\mathcal{G}})_{\min}$.

Finally observe that our results are not true for infinite graphs and hypergraphs. Let $A = \{a_i: i \in \mathbb{Z}\}$ and $B = \{b_i: i \in \mathbb{Z}\}$ be two infinite disjoint sets (where \mathbb{Z} is the set of all integers), and take

$$G_{1} = \{\{a_{i}, a_{j}\}: i \neq j\} \cup \{\{b_{i}, b_{j}\}: i \neq j\} \cup \{\{a_{i}, b_{j}\}: j \leq i\},\$$

$$G_{2} = \{\{a_{i}, a_{j}\}: i \neq j\} \cup \{\{b_{i}, b_{j}\}: i \neq j\} \cup \{\{a_{i}, b_{j}\}: j \leq i-1\}.$$

Then first G_2 is a proper subgraph of G_1 . Secondly, for each $i \in \mathbb{Z}$,

$$\begin{split} N_{G_1}(a_i) &= A \cup \{b_j: \ j \le i\}, \qquad N_{G_1}(b_i) = B \cup \{a_j: \ j \ge i\}, \\ N_{G_2}(a_i) &= A \cup \{b_j: \ j \le i-1\}, \quad N_{G_2}(b_i) = B \cup \{a_j: \ j \ge i+1\} \end{split}$$

Hence, $N_{G_2}(a_i) = N_{G_1}(a_{i-1}) \subseteq N_{G_1}(a_i)$ and $N_{G_2}(b_i) = N_{G_1}(b_{i+1}) \subseteq N_{G_1}(b_i)$. In particular, $\mathcal{N}(G_1) = \mathcal{N}(G_2)$.

By the above facts we have also that the clique hypergraphs \mathcal{G}_1 and \mathcal{G}_2 of the graphs G_1 and G_2 satisfy assumptions of Theorem 2. But they are not equal, because $G_1 \neq G_2$.

Acknowledgments. The author is indebted to the referee for suggestions that helped to improve the paper and simplify the proofs of the main results.

References

- [1] Berge C., Hypergraphs, North-Holland, Amsterdam, 1989.
- [2] Berge C., Graphs and Hypergraphs, North-Holland, Amsterdam, 1973.
- [3] Berge C., Duchet P., A generalization of Gilmore's theorem, Recent Advances in Graph Theory, (Fiedler M., ed.), Academia, Prague, 1975, pp. 49–55.
- [4] Erdös P., Gallai T., Tuze Z., Covering the cliques of a graph with vertices, Discrete Math. 108 (1992), 279–289.
- [5] Jensen T.R., Toft B., Graph Coloring Problems, Wiley Interscience, New York, 1995.
- [6] Prisner E., Intersection multigraphs of uniform hypergraphs, Graphs Combin. 14 (1998), no. 4, 363–375.

Institute of Mathematics, Warsaw University, ul. Banacha 2, PL-02-097 Warsaw, Poland

E-mail: kpioro@mimuw.edu.pl

(Received November 15, 2004, revised September 13, 2005)