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On a property of neighborhood hypergraphs

KONRAD PIORO

Abstract. The aim of the paper is to show that no simple graph has a proper subgraph
with the same neighborhood hypergraph. As a simple consequence of this result we
infer that if a clique hypergraph G and a hypergraph H have the same neighborhood
hypergraph and the neighborhood relation in G is a subrelation of such a relation in H,
then H is inscribed into G (both seen as coverings). In particular, if H is also a clique
hypergraph, then H = G.
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Recall (see e.g. [1]) that a hypergraph G = (V, £) consists of a finite set V' of ver-
tices and a finite sequence £ of hyperedges, where each hyperedge is a non-empty
subset of V', and the union of all hyperedges is V' (note that a hypergraph may
have multiple hyperedges). A hypergraph is simple, if no hyperedge is contained
in another hyperedge.

With an ordinary graph G at least two hypergraphs can be associated. The
first consists of all maximal cliques of G and is called the clique hypergraph.
These hypergraphs form an important subclass of hypergraphs. For example,
they are related with the Helly property (see [1]), and they also appear in the
clique-transversal problem (see [4]), and consequently in graph coloring problems
(see e.g. [5]).

The second hypergraph associated with G is formed by neighborhoods of ver-
tices. Recall (see [1]) that two vertices of G are neighbors if they are adjacent or
equal. The set of all neighbors of a vertex v is denoted by N¢(v) and called the
neighborhood of v. Next, we take all pairwise different neighborhoods in G to
obtain a new hypergraph N (G) on the vertex set of G, called the neighborhood
hypergraph of G. N(G) has no multiple hyperedges, but, in general, N'(G) is
not simple. Of course, hypergraphs N (H )max (consisting of all maximal hyper-
edges of N'(G) with respect to inclusion) and N(G)pmin (consisting of all minimal
hyperedges of N'(G)) are simple, but they play no important role here.

Theorem 1. Let G be a simple graph and H its subgraph. If N(H) = N(G),
then H = G.
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PROOF: Take a vertex v of H such that Ny (v) is maximal up to inclusion. Let
X be the set of all vertices w of H such that Ny(w) = Ny (v), and Xg be the
set of all vertices w of G such that Ng(w) = Ng(v).

Since N (v) corresponds to a maximal (up to inclusion) hyperedge of N'(H) =
N(G) and H is a subgraph of G, we infer that

Xy € Xg,

in particular Ny (v) = Ng(v).

Assume that there is a vertex w € Xg \ Xp. Since Ng(w) = Ng(v) and
w € Ng(w) (by the definition), the vertices v and w are adjacent in H, thus also
in G.

Since N (w) C Ng(w) = Ny (v) and Ng(w) # Ny (v) (by the assumption),
there exists a vertex u such that

u € Nig(v) = Ng(w) and u ¢ Ng(w).

Then
Np(u) # Ng(u).

Hence and by the equality N'(H) = N (G), there is a vertex u’ such that
Np(u) = Ng(u').

Then v € Ny (u) = Ng(u'), i.e. the vertices v and v’ are adjacent in G.
On the other hand,
w & Ny (u) = Ne(u),
S0

u' ¢ Ng(w) = Ng(v) = Ne(v),

i.e. the vertices v’ and v are not adjacent in G. This contradiction implies
Xy =Xg.

Observe now that the vertices of X = Xy = X form a clique in both the graphs
H and G and the sets of neighbors of every vertex of X in the rest of the graphs H
and G are the same. Thus to end the proof it is sufficient to apply the induction
(on the order of graph) to the pair of graphs H \ X and G \ X (note that they
may have isolated vertices, but it is not a problem). (|

Recall that a simple hypergraph G is said to be a clique hypergraph, if it is the
clique hypergraph of some graph G. Observe that neighborhoods of each vertex
v in G and G are the same, in particular N'(G) = N(G) (where neighbors in
a hypergraph are defined analogously as for a graph). Moreover, G is uniquely
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determined (therefore it will be sometimes denoted by Gg). Because two different
vertices of G are adjacent if and only if they are both contained in a hyperedge
of G. Hence it also easy follows (see [1]) that a simple hypergraph G = (V&) is
a clique hypergraph if and only if for each subset A of V', the following condition
holds:

(Cq) if every pair of vertices of A belongs to some hyperedge of G, then A is
contained in a hyperedge of G.

(Hypergraphs satisfying (C3), not necessarily simple, were called conformal by
Berge in [1]. However, today the concept of conformality has a slightly different
meaning (see e.g. [6]).)

(C9) is related with the Helly property (see [1]). More precisely, a hypergraph
G = (V,€) has the Helly property (i.e. for any F C &, if any two hyperedges in
F have a non-empty intersection, then the intersection of F is also non-empty)
if and only if its dual G* satisfies (C2). G* = (£,V™) is the hypergraph whose
vertices are hyperedges of G and the set of hyperedges is V* = {G(v):v € V},
where G(v) = {E € £&:v € E}. Gilmore’s Theorem (see Chapter 1, §7 in [1]) gives
the following necessary and sufficient condition for a hypergraph G to satisfy (Cs):
for every three hyperedges E1, E5, E3 of G, there is a hyperedge of G containing
the set (E1 N FE3) U (F2N E3)U(E3NEp). The condition can be easily translated
into the Helly property (see [1]). This result have been generalized by Berge and
Duchet in [3] (see also [1]) to hypergraphs with the k-Helly property (i.e. for any
family F of hyperedges of G, if every subfamily of F with at most & elements has a
non-empty intersection, then F also has a non-empty intersection). The k-Helly
property corresponds with the condition (C},) obtained from (C2) by replacing
“every pair” with “every subset with at most k vertices”.

We say that a hypergraph H is inscribed into a hypergraph G if for any hy-
peredge F' of H there is a hyperedge E of G such that F¥ C E. It is just a
reformulation of the well-known notion for covering in the case of hypergraphs.

Theorem 2. Let G be a clique hypergraph and ‘H be an arbitrary hypergraph
with the same vertex set such that

(¥) Ng(v) € Ny(v) for each vertex v,
(xx) N(G) = N(H).
Then 'H is inscribed into G.

ProOOF: Take an auxiliary graph H with the same vertex set as H such that two
different vertices of H are adjacent if and only if they are contained in a common
hyperedge of H. Then Ny (v) = Ny(v) for any vertex v. Hence and by (x) we
first infer that the graph Gg is a subgraph of H. Secondly, N(Gg) = N(H)
by (**). Thus by Theorem 1 we obtain Gg = H, i.e. G is the clique hypergraph
of H. It easily implies that H is inscribed into G. O

By the above proof we obtain in particular that for any hypergraph H there
exists exactly one clique hypergraph H’ with the same vertex set such that H is
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inscribed into H’ and Ny (v) = Ny (v) for each vertex v (it is sufficient to take
the graph H for H as above and its clique hypergraph).

This fact and Theorem 2 (because the relation “to be inscribed into” is a partial
order for simple hypergraphs) imply that G is a clique hypergraph if and only if
for each simple hypergraph H with the same vertex set, if G is inscribed into H
and N(H) = N(G), then H = G. In particular

Corollary 3. Let G and ‘H be clique hypergraphs with the same vertex set sat-
isfying (*) and (xx). Then G = 'H.
By Theorem 2 we obtain also that if a clique hypergraph G is a subhypergraph

of a hypergraph H and N(G) = N (H), then H is inscribed into G. In particular,
if H is simple, then G = H.

Now we translate the above results for hypergraphs having the Helly property.
Observe that Theorem 2 holds also for hypergraphs satisfying (Co). Because if G is
such a hypergraph, then Gnax is a clique hypergraph, and also Ng,_ . (v) = Ng(v)
for any vertex v.

For hypergraphs G = (V, (E1,...,Eyp)) and H = (W, (EY,... ,E},)) we will
“assume” in the results below that G* and H* (and also N (G*) and N (H*)) have
the same vertex set {F1,...,En}. Say more formally, we identify hyperedges
FE; and EZ{, i.e. the equality G* = H* denotes that the natural correspondence
E; — EZ/ forms an isomorphism between these hypergraphs.

Corollary 4. Let G = (V,(E1,...,Ey)) be a hypergraph with the Helly prop-
erty. Let H = (W, (EY,...,E},)) be a hypergraph satisfying
(x) for any 1 <i,j <mn, EiﬂEj7£@:>E£ﬂE§.;£(Z),
(xx) N(H*) = N(G*).
Then for each w € W, there is v € V such that for any 1 <1i < n,

w € E, = v € E,.

PROOF: (*) implies Ng=(E;) C Ny« (E!) for each i = 1,2,... ,n. Hence, H* is
inscribed into G*. This implies the thesis. O

The implication in the above result cannot be replaced by the equivalence.
Take the following two hypergraphs G = ({1,2,3,4}, ({1,2},{2,3}, {3,4})) and
H = ({1,2,3,4}, ({1,2},{2,3,5},{3,4})). Then G and H satisfy the conditions
(*) and (+*), and G has the Helly property. On the other hand, H(5) = {{2,3,5}},
and G(2) = {{1,2},{2,3}}, 6(3) = {{2,3}. {3, 4} }.

Take a hypergraph G = (V,(Eq,...,Ey)) and note that G* is simple if and
only if for each vertices v, w € V, the following condition holds:

(DS) {EiZUEEi}g{E]‘:’wEE]‘}é’U:w.
Thus by Corollary 3 we obtain (because (G*)* = G):
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Corollary 5. Let hypergraphs with the Helly property G = (V,(E1,...,En))
and H = (W,(E},... ,Ey)) satisty (DS) and (x), (x*) of Corollary 4. Then
G = 'H (strictly formally, G and H are isomorphic).

Using the last corollary of Theorem 1 (i.e. its modified version in which we assume
that G satisfies (C2)) we can also show that if a hypergraph G having the Helly
property is a subhypergraph of a hypergraph H and N(G*) = N(H*), then H
has also the Helly property. If H satisfies additionally (D.S), then H = G.

Observe that to a given hypergraph G = (V, (F1,... , En)) new vertices can be
added in such a way that the obtained hypergraph has the Helly property. More
precisely, there is a hypergraph G’ = (V', (E], ... , E},)) such that

(i) B; CEfori=1,...,n,
(ii) for each 1 <i,j <n, E{ﬂE; #0 <= E,NE; #0,

(iii) G’ has the Helly property.

Take the dual hypergraph G*, and the graph G with vertices F1,... , Ey such
that £; and Ej; (i # j) are adjacent if and only if they both belong to a hyperedge
of G*. Next, take the hypergraph H consisting of all maximal cliques of G and all
hyperedges of G*. Then G* is inscribed into H, so Hmax is a clique hypergraph,
which implies that H satisfies (C2). Moreover, Ny (E;) = Ng(E;) = Ng«(E;) for
each i = 1,...,n. Thus it is sufficient to take G’ = H*.

Now we show that the assumptions of Theorems 1 and 2 (thus also their corol-
laries) are necessary. First, the following graphs G = ({1,2}, {2,3},{3,4},{1,4})
and H = ({1,3},{3,4},{2,4},{1,2}) are different, but they have the same neigh-
borhood hypergraph (because N'(G) and N'(H) consist of all three-element subsets
of {1,2,3,4}). Further, the clique hypergraphs of G and H are equal to G and H,
respectively.

Secondly, take the following hypergraphs G = ({1,5,6,7},{1,4,5,7},{2,3,4,7})
and H = ({1,5,6,7},{1,2,4,5,7},{2,3,4,7}). It is easy to see that they are
clique hypergraphs. G and H satisfy (%) of Theorem 2, and (xx) does not hold,
since Ng(1) = {1,4,5,6,7} ¢ N(H). On the other hand, N (G)max = N(H)max
(because they have exactly one hyperedge Ng(7) = Ny (7) = {1,2,...,7})
and N (G)min = N(H)min (because they have exactly two hyperedges Ng(3) =
Ny (3) =1{2,3,4,7} and Ng(6) = Ny (6) = {1,5,6,7}). Observe also that Gg is
a proper subgraph of Gy, (where Gg and Gy are the graphs corresponding to G
and H), although N(G)max = N(Gg)max and N(G)min = N (GG )min-

Finally observe that our results are not true for infinite graphs and hypergraphs.
Let A ={a;: i € Z} and B = {b;: i € Z} be two infinite disjoint sets (where Z is
the set of all integers), and take

G1 = {{ai,a;}: i # 5} U{{bi,bj}: i # 5} U{{asb;}:5 <i},
Go = {{aj,a;}: i #5} U {{bi,bj}: i #j}U{{a;b;}:j <i—1}.
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Then first G2 is a proper subgraph of G1. Secondly, for each 7 € Z,

Ng,(a;) = AU{b;: j < i, Ng, (b)) = BU{a;: j = i},
NGZ((LZ‘)ZAU{[)]‘Z Jj<i-—1}, NG2(bZ’)=BU{a]‘Z j>i+1}.

Hence7 NGz(ai) = NGl (ai—l) - NGl(ai) and NGz(bZ) = NG1 (bi—i-l) - NGl(bZ)
In particular, N (G1) = N (G2).
By the above facts we have also that the clique hypergraphs G; and G2 of the

graphs G1 and (g satisfy assumptions of Theorem 2. But they are not equal,
because G # Gs.
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