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On a property of neighborhood hypergraphs

Konrad Pióro

Abstract. The aim of the paper is to show that no simple graph has a proper subgraph
with the same neighborhood hypergraph. As a simple consequence of this result we
infer that if a clique hypergraph G and a hypergraph H have the same neighborhood
hypergraph and the neighborhood relation in G is a subrelation of such a relation in H,
then H is inscribed into G (both seen as coverings). In particular, if H is also a clique
hypergraph, then H = G.
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Recall (see e.g. [1]) that a hypergraph G = (V, E) consists of a finite set V of ver-
tices and a finite sequence E of hyperedges, where each hyperedge is a non-empty
subset of V , and the union of all hyperedges is V (note that a hypergraph may
have multiple hyperedges). A hypergraph is simple, if no hyperedge is contained
in another hyperedge.

With an ordinary graph G at least two hypergraphs can be associated. The
first consists of all maximal cliques of G and is called the clique hypergraph.
These hypergraphs form an important subclass of hypergraphs. For example,
they are related with the Helly property (see [1]), and they also appear in the
clique-transversal problem (see [4]), and consequently in graph coloring problems
(see e.g. [5]).

The second hypergraph associated with G is formed by neighborhoods of ver-
tices. Recall (see [1]) that two vertices of G are neighbors if they are adjacent or
equal. The set of all neighbors of a vertex v is denoted by NG(v) and called the
neighborhood of v. Next, we take all pairwise different neighborhoods in G to
obtain a new hypergraph N (G) on the vertex set of G, called the neighborhood
hypergraph of G. N (G) has no multiple hyperedges, but, in general, N (G) is
not simple. Of course, hypergraphs N (H)max (consisting of all maximal hyper-
edges of N (G) with respect to inclusion) and N (G)min (consisting of all minimal
hyperedges of N (G)) are simple, but they play no important role here.

Theorem 1. Let G be a simple graph and H its subgraph. If N (H) = N (G),
then H = G.
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Proof: Take a vertex v of H such that NH(v) is maximal up to inclusion. Let
XH be the set of all vertices w of H such that NH(w) = NH(v), and XG be the
set of all vertices w of G such that NG(w) = NH(v).
Since NH(v) corresponds to a maximal (up to inclusion) hyperedge of N (H) =

N (G) and H is a subgraph of G, we infer that

XH ⊆ XG,

in particular NH(v) = NG(v).
Assume that there is a vertex w ∈ XG \ XH . Since NG(w) = NH(v) and

w ∈ NG(w) (by the definition), the vertices v and w are adjacent in H , thus also
in G.
Since NH(w) ⊆ NG(w) = NH(v) and NH(w) 6= NH(v) (by the assumption),

there exists a vertex u such that

u ∈ NH(v) = NG(w) and u /∈ NH(w).

Then
NH(u) 6= NG(u).

Hence and by the equality N (H) = N (G), there is a vertex u′ such that

NH(u) = NG(u
′).

Then v ∈ NH(u) = NG(u
′), i.e. the vertices v and u′ are adjacent in G.

On the other hand,
w /∈ NH(u) = NG(u

′),

so
u′ /∈ NG(w) = NH(v) = NG(v),

i.e. the vertices u′ and v are not adjacent in G. This contradiction implies

XH = XG.

Observe now that the vertices of X = XH = XG form a clique in both the graphs
H and G and the sets of neighbors of every vertex of X in the rest of the graphs H
and G are the same. Thus to end the proof it is sufficient to apply the induction
(on the order of graph) to the pair of graphs H \ X and G \ X (note that they
may have isolated vertices, but it is not a problem). �

Recall that a simple hypergraph G is said to be a clique hypergraph, if it is the
clique hypergraph of some graph G. Observe that neighborhoods of each vertex
v in G and G are the same, in particular N (G) = N (G) (where neighbors in
a hypergraph are defined analogously as for a graph). Moreover, G is uniquely
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determined (therefore it will be sometimes denoted by GG). Because two different
vertices of G are adjacent if and only if they are both contained in a hyperedge
of G. Hence it also easy follows (see [1]) that a simple hypergraph G = (V, E) is
a clique hypergraph if and only if for each subset A of V , the following condition
holds:

(C2) if every pair of vertices of A belongs to some hyperedge of G, then A is
contained in a hyperedge of G.

(Hypergraphs satisfying (C2), not necessarily simple, were called conformal by
Berge in [1]. However, today the concept of conformality has a slightly different
meaning (see e.g. [6]).)
(C2) is related with the Helly property (see [1]). More precisely, a hypergraph

G = (V, E) has the Helly property (i.e. for any F ⊆ E , if any two hyperedges in
F have a non-empty intersection, then the intersection of F is also non-empty)
if and only if its dual G∗ satisfies (C2). G∗ = (E , V ∗) is the hypergraph whose
vertices are hyperedges of G and the set of hyperedges is V ∗ = {G(v): v ∈ V },
where G(v) = {E ∈ E : v ∈ E}. Gilmore’s Theorem (see Chapter 1, §7 in [1]) gives
the following necessary and sufficient condition for a hypergraph G to satisfy (C2):
for every three hyperedges E1, E2, E3 of G, there is a hyperedge of G containing
the set (E1 ∩E2)∪ (E2 ∩E3)∪ (E3 ∩E1). The condition can be easily translated
into the Helly property (see [1]). This result have been generalized by Berge and
Duchet in [3] (see also [1]) to hypergraphs with the k-Helly property (i.e. for any
family F of hyperedges of G, if every subfamily of F with at most k elements has a
non-empty intersection, then F also has a non-empty intersection). The k-Helly
property corresponds with the condition (Ck) obtained from (C2) by replacing
“every pair” with “every subset with at most k vertices”.
We say that a hypergraph H is inscribed into a hypergraph G if for any hy-

peredge F of H there is a hyperedge E of G such that F ⊆ E. It is just a
reformulation of the well-known notion for covering in the case of hypergraphs.

Theorem 2. Let G be a clique hypergraph and H be an arbitrary hypergraph
with the same vertex set such that

(∗) NG(v) ⊆ NH(v) for each vertex v,
(∗∗) N (G) = N (H).

Then H is inscribed into G.

Proof: Take an auxiliary graph H with the same vertex set as H such that two
different vertices of H are adjacent if and only if they are contained in a common
hyperedge of H. Then NH(v) = NH(v) for any vertex v. Hence and by (∗) we
first infer that the graph GG is a subgraph of H . Secondly, N (GG) = N (H)
by (∗∗). Thus by Theorem 1 we obtain GG = H , i.e. G is the clique hypergraph
of H . It easily implies that H is inscribed into G. �

By the above proof we obtain in particular that for any hypergraph H there
exists exactly one clique hypergraph H′ with the same vertex set such that H is
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inscribed into H′ and NH′(v) = NH(v) for each vertex v (it is sufficient to take
the graph H for H as above and its clique hypergraph).
This fact and Theorem 2 (because the relation “to be inscribed into” is a partial

order for simple hypergraphs) imply that G is a clique hypergraph if and only if
for each simple hypergraph H with the same vertex set, if G is inscribed into H
and N (H) = N (G), then H = G. In particular

Corollary 3. Let G and H be clique hypergraphs with the same vertex set sat-
isfying (∗) and (∗∗). Then G = H.

By Theorem 2 we obtain also that if a clique hypergraph G is a subhypergraph
of a hypergraph H and N (G) = N (H), then H is inscribed into G. In particular,
if H is simple, then G = H.

Now we translate the above results for hypergraphs having the Helly property.
Observe that Theorem 2 holds also for hypergraphs satisfying (C2). Because if G is
such a hypergraph, then Gmax is a clique hypergraph, and also NGmax(v) = NG(v)
for any vertex v.
For hypergraphs G = (V, (E1, . . . , En)) and H = (W, (E′

1, . . . , E′
n)) we will

“assume” in the results below that G∗ and H∗ (and also N (G∗) and N (H∗)) have
the same vertex set {E1, . . . , En}. Say more formally, we identify hyperedges
Ei and E′

i, i.e. the equality G∗ = H∗ denotes that the natural correspondence
Ei 7−→ E′

i forms an isomorphism between these hypergraphs.

Corollary 4. Let G = (V, (E1, . . . , En)) be a hypergraph with the Helly prop-
erty. Let H = (W, (E′

1, . . . , E′
n)) be a hypergraph satisfying

(∗) for any 1 ≤ i, j ≤ n, Ei ∩ Ej 6= ∅ =⇒ E′
i ∩ E′

j 6= ∅,

(∗∗) N (H∗) = N (G∗).

Then for each w ∈ W , there is v ∈ V such that for any 1 ≤ i ≤ n,

w ∈ E′
i =⇒ v ∈ Ei.

Proof: (∗) implies NG∗(Ei) ⊆ NH∗(E′
i) for each i = 1, 2, . . . , n. Hence, H∗ is

inscribed into G∗. This implies the thesis. �

The implication in the above result cannot be replaced by the equivalence.
Take the following two hypergraphs G =

(

{1, 2, 3, 4}, ({1, 2}, {2, 3}, {3, 4})
)

and

H =
(

{1, 2, 3, 4}, ({1, 2}, {2, 3, 5}, {3, 4})
)

. Then G and H satisfy the conditions

(∗) and (∗∗), and G has the Helly property. On the other hand,H(5) =
{

{2, 3, 5}
}

,

and G(2) =
{

{1, 2}, {2, 3}
}

, G(3) =
{

{2, 3}, {3, 4}
}

.

Take a hypergraph G = (V, (E1, . . . , En)) and note that G
∗ is simple if and

only if for each vertices v, w ∈ V , the following condition holds:

(DS) {Ei: v ∈ Ei} ⊆ {Ej :w ∈ Ej} =⇒ v = w.

Thus by Corollary 3 we obtain (because (G∗)∗ = G):
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Corollary 5. Let hypergraphs with the Helly property G = (V, (E1, . . . , En))
and H = (W, (E′

1, . . . , E′
n)) satisfy (DS) and (∗), (∗∗) of Corollary 4. Then

G = H (strictly formally, G and H are isomorphic).

Using the last corollary of Theorem 1 (i.e. its modified version in which we assume
that G satisfies (C2)) we can also show that if a hypergraph G having the Helly
property is a subhypergraph of a hypergraph H and N (G∗) = N (H∗), then H
has also the Helly property. If H satisfies additionally (DS), then H = G.
Observe that to a given hypergraph G = (V, (E1, . . . , En)) new vertices can be

added in such a way that the obtained hypergraph has the Helly property. More
precisely, there is a hypergraph G′ = (V ′, (E′

1, . . . , E′
n)) such that

(i) Ei ⊆ E′
i for i = 1, . . . , n,

(ii) for each 1 ≤ i, j ≤ n, E′
i ∩ E′

j 6= ∅ ⇐⇒ Ei ∩ Ej 6= ∅,

(iii) G′ has the Helly property.

Take the dual hypergraph G∗, and the graph G with vertices E1, . . . , En such
that Ei and Ej (i 6= j) are adjacent if and only if they both belong to a hyperedge
of G∗. Next, take the hypergraph H consisting of all maximal cliques of G and all
hyperedges of G∗. Then G∗ is inscribed into H, so Hmax is a clique hypergraph,
which implies that H satisfies (C2). Moreover, NH(Ei) = NG(Ei) = NG∗(Ei) for
each i = 1, . . . , n. Thus it is sufficient to take G′ = H∗.

Now we show that the assumptions of Theorems 1 and 2 (thus also their corol-
laries) are necessary. First, the following graphs G =

(

{1, 2}, {2, 3}, {3, 4}, {1, 4}
)

and H =
(

{1, 3}, {3, 4}, {2, 4}, {1, 2}
)

are different, but they have the same neigh-
borhood hypergraph (becauseN (G) andN (H) consist of all three-element subsets
of {1, 2, 3, 4}). Further, the clique hypergraphs of G and H are equal to G and H ,
respectively.
Secondly, take the following hypergraphs G=({1, 5, 6, 7}, {1, 4, 5, 7}, {2, 3, 4, 7})

and H = ({1, 5, 6, 7}, {1, 2, 4, 5, 7}, {2, 3, 4, 7}). It is easy to see that they are
clique hypergraphs. G and H satisfy (∗) of Theorem 2, and (∗∗) does not hold,
since NG(1) = {1, 4, 5, 6, 7} /∈ N (H). On the other hand, N (G)max = N (H)max
(because they have exactly one hyperedge NG(7) = NH(7) = {1, 2, . . . , 7})
and N (G)min = N (H)min (because they have exactly two hyperedges NG(3) =
NH(3) = {2, 3, 4, 7} and NG(6) = NH(6) = {1, 5, 6, 7}). Observe also that GG is
a proper subgraph of GH (where GG and GH are the graphs corresponding to G
and H), although N (GH)max = N (GG)max and N (GH)min = N (GG)min.

Finally observe that our results are not true for infinite graphs and hypergraphs.
Let A = {ai: i ∈ Z} and B = {bi: i ∈ Z} be two infinite disjoint sets (where Z is
the set of all integers), and take

G1 =
{

{ai, aj}: i 6= j
}

∪
{

{bi, bj}: i 6= j
}

∪
{

{ai, bj}: j ≤ i
}

,

G2 =
{

{ai, aj}: i 6= j
}

∪
{

{bi, bj}: i 6= j
}

∪
{

{ai, bj}: j ≤ i − 1
}

.
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Then first G2 is a proper subgraph of G1. Secondly, for each i ∈ Z,

NG1(ai) = A ∪ {bj : j ≤ i}, NG1(bi) = B ∪ {aj : j ≥ i},

NG2(ai) = A ∪ {bj : j ≤ i − 1}, NG2(bi) = B ∪ {aj : j ≥ i+ 1}.

Hence, NG2(ai) = NG1(ai−1) ⊆ NG1(ai) and NG2(bi) = NG1(bi+1) ⊆ NG1(bi).
In particular, N (G1) = N (G2).
By the above facts we have also that the clique hypergraphs G1 and G2 of the

graphs G1 and G2 satisfy assumptions of Theorem 2. But they are not equal,
because G1 6= G2.
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